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Abstract:  
This research assessed the societal acceptance and biophysical potential of water quality 
improvement practices for reducing nutrient and sediment loading from urban and agricultural 
sources in the East Branch–Little Calumet River and Trail Creek watersheds in Northwest 
Indiana. Specifically, this research (1) characterized N, P, sediment and E. coli loading to Lake 
Michigan by resident groups within the watersheds (i.e., urban residential, suburban residential, 
rural residential, small agricultural, and medium/large agricultural); (2) determined different 
resident groups’ willingness to adopt water quality improvement practices and the role of 
information in shaping their willingness to adopt; and, (3) aggregated potential nutrient and 
sediment removal at the watershed scale based upon resident groups’ willingness to adopt. This 
research found that agricultural areas in the watershed, particularly cropland, produce higher N, 
P, sediment and E. coli loads than urban/suburban areas. Research results showed that watershed 
residents generally are aware of and have positive attitudes towards water quality improvement 
practices, although their likelihood of adoption is low. Watershed residents’ perception of 
descriptive norm and value placed on being a good example to family, friends and neighbors 
both increase their likelihood of adoption. This research also showed that information alone is 
unlikely to change the willingness of adoption among watershed residents who already feel 
positive or negative about water quality problems; however, information about how to choose, 
install and maintain specific water quality improvement practices may play a role in promoting 
adoption among those who do not have strong feelings about water quality problems currently. 
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Lay Summary: 
Our research aimed at understanding the societal acceptance and biophysical potential of 
conservation practices for reducing nutrient and sediment loading from urban and agricultural 
sources. We conducted our research in two watersheds in Northwest Indiana, the East Branch–
Little Calumet River watershed and the Trail Creek watershed. Both watersheds are located 
within the larger Little Calumet-Galien (LCG) watershed, which is the only watershed in Indiana 
that drains to Lake Michigan. We conducted our research in three stages. First, we used an 
integrated modeling approach to help us quantify current water volume and pollutant loadings 
from different resident groups (e.g., urban and rural, agricultural and non-agricultural). Second, 
we used a mail survey to understand how residents in Porter and LaPorte Counties (where the 
East Branch–Little Calumet River watershed and the Trail Creek watershed are mostly located) 
perceive water quality problems and what they are doing to reduce water quality problems in 
terms of adopting best management practices (BMPs). Finally, we developed BMP 
implementation scenarios based on both biophysical characteristics of the watersheds and 
watershed residents’ willingness to adopt BMPs. We are currently comparing the modeling 
results from a range of scenarios with results from the first stage of the project.  
 
Through these three stages of conducting research, we found that watershed residents generally 
have high levels of awareness of and positive attitudes towards BMPs; however, they are not 
very likely to adopt any BMPs to improve water quality. We also found that resident groups 
differ in how they perceive social pressure from peers and others to adopt BMPs to improve 
water quality. Watershed residents generally value improved environmental quality and reduce 
flash flood risk as benefits of adopting BMPs, but they do not seem to know enough about 
specific conservation practices and have concerns about how to install and maintain the practices 
as main barriers to adoption. Generally, respondents who are younger, perceive more problems 
with various potential water pollution sources, are more aware of water quality improvement 
practices, have more positive attitudes, have a stronger sense of personal responsibility, have 
sought information in the past about water quality problems, or perceive stronger social pressure 
from peers are more likely to be interested in adopting BMPs to improve water quality in the 
next year. While information about how to choose, install and maintain specific water quality 
improvement practices may be useful for watershed residents, the effect may be different based 
on their initial perceptions about water quality problems. Information alone is unlikely to change 
the willingness to adopt BMPs among people who feel very positive or negative about water 
quality problems to begin with; however, information may play a role among people who do not 
have strong feelings about water quality problems.  
 
Initial results from the watershed model showed that agricultural regions, in particular cropland, 
produce higher loads of N, P, sediment, and E. coli than urban and suburban regions. This trend 
remained when the loads were corrected for area of the watershed within each land use type. We 
also learned from our surveys that agricultural land owners were more knowledgeable and likely 
to implement BMPs than their urban counterparts. We used both biophysical and social 
information to develop several BMP implementation scenarios, including (1) implementation of 
urban/suburban BMPs in all available land, (2) implementation of agricultural BMPs in all 
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available land, and 3) implementation of both urban/suburban and agricultural BMPs at 
percentages in which the residents were both knowledgeable and willing to implement them. We 
are currently running these scenarios and will compare results to range of BMP adoption 
scenarios in both land uses to understand the complexities in pollutant reduction at the watershed 
scale. By doing so, we will be able to understand the realistic potential of using BMPs to reduce 
water pollution in our watersheds, and identify groups of residents within the watersheds who 
could be targeted for increased education, assistance, and incentives to promote adoption of 
conservation practices. 
 
Section B. Accomplishments 
 
Introduction 
The overall goal of the proposed research was to assess the societal acceptance and biophysical 
potential of conservation practices for reducing nutrient (N, P), sediment, and pathogen (E. coli) 
loading from urban and agricultural sources in the East Branch–Little Calumet River watershed 
and the Trail Creek watershed in Northwest Indiana. The objectives of the proposed research 
were to: (1) characterize current N, P, sediment, and E. coli loading to Lake Michigan by 
resident groups within the watersheds (i.e., urban residential, suburban residential, rural 
residential, small agricultural, and medium/large agricultural) to develop baseline and optimized 
scenarios; (2) determine the willingness of different resident groups to adopt conservation 
practices that reduce N, P, sediment, and E. coli loading to Lake Michigan, and the role of 
information about attribution of responsibility in shaping their willingness to adopt; and (3) 
aggregate the potential N, P, sediment, and E. coli removal at the watershed scale based upon the 
willingness of different resident groups to adopt conservation practices.  
 
Project Narrative  

Methods and Research Activities 
Objective 1: 
We addressed both Objectives 1 and 3 with a modeling approach that used the Generalized 
Watershed Loading Function – enhanced (GWLF-E) watershed model to characterize water and 
pollutant export based on current land use and existing implementation of BMPs within the 
watershed. A robust model comparison was conducted to select the model that was well-suited to 
the scale of the research questions, particularly the ability to simulate all of the parameters of 
interest and implement both rural and urban conservation practices. We compared three models 
included in EPA’s BASINS modeling framework: GWLF-E, the Soil and Water Assessment 
Tool (SWAT) and the Hydrologic Simulation Program – Fortran (HSPF). GWLF-E was chosen 
because the lower level of complexity was appropriate for annual comparisons of pollutant 
reductions at the watershed scale.  GWLF-E is useful for mixed land-uses in our study since it is 
able to model the key nutrient, sediment (and pathogenic) processes in both urban and rural 
regions (U.S. EPA 1999). The GWLF model has been widely used for watershed planning and 
was applied in the Trail Creek Watershed in 2003 to support the watershed management plan 
that was completed in response to a Total Maximum Daily Load (TMDL) report for E. coli 
issued by the Indiana Department of Environmental Management. Since then, significant 
enhancements were made including the addition of tile drainage routines, point-source effluent, 
new pathogen and animal loading routines, and pollutant load and water volume reductions from 
multiple types of urban and agricultural BMPs.   
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The underlying model framework for GWLF-e is similar to the initially proposed combination of 
L-THIA-LID and STEPL model. It uses the SCS-CN approach to estimate runoff depth and 
volume. In rural regions, an event mean concentration (EMC) based on land use classification is 
applied to the runoff volume to quantify dissolved pollutant loads (Haith et al. 1992). Particulate 
loads are quantified by the product of sediment delivery and sediment nutrient concentrations. 
Nutrient loads in GWLF- E are based on the same exponential accumulation and wash off 
relationships used in many other models (Amy et al 1974, Sartor & Boyd 1972). We are running 
the model separately for each watershed using daily precipitation and temperature data collected 
from 13 weather stations in LaPorte and Porter Counties during the years 1995-2018 and creating 
a single time series for each via inverse distance weighting. Annual and monthly values are 
calculated as the aggregate of the daily direct runoff values. This approach also allows us to 
investigate climate effects by comparing loading and removal efficiency during wet, average, 
and dry years. In the GWLF-E model, pollutant removal for rural BMPs is accomplished by a 
BMP reduction coefficient based on the PRedICT model (Evans et al. 2008). Urban pollutant 
removal is accomplished using a BMP reduction coefficient that is determined from an adjustor 
curve in the U.S. EPA’s Chesapeake Bay Watershed Model that includes the depth of runoff 
captured.  
 
Current land use classifications were determined using the 2011 NLCD (Jin et al. 2013). We 
worked closely with our partner organizations, including Save the Dunes, Northwestern Indiana 
Regional Planning Commission (NIRPC), Porter and LaPorte County Soil and Water 
Conservation Districts, and NRCS, to determine existing BMPs in both urban and rural land uses 
based on their knowledge of the watersheds. We also contacted engineering companies (e.g., 
Christopher Burke Engineering, American Structurepoint, Inc.) who have developed and 
implemented watershed plans and stormwater management practices as part of the region’s 
Municipal Separate Storm Sewer System (MS4) programs. We interviewed LaPorte County, 
Porter and Michigan City stormwater managers to ensure that the existing BMP implementation 
scenario accurately captures stormwater management strategies currently implemented in the 
urban/suburban areas. Though these efforts, we established proportions of BMP implementation 
by land use classification within each watershed and included those in the baseline (current 
conditions) model. While we recognize that this approach will not perfectly replicate existing 
conditions, our models are not spatially explicit and this approach allows for comparative 
analysis of future implementation scenarios.  
 
The GWLF-E model was calibrated by adjusting several hydrologic parameters (e.g. CNs, ET 
cover coefficients, Available Water Capacity) to match observed streamflow data on an annual 
basis at the USGS gages (04095300, 04094000). We decided to not use the USGS gauge at the 
Michigan City Harbor in Trail Creek (04095380) for calibration since the streamflow record had 
frequent periods of upstream flow due to backwater effects from Lake Michigan. A sensitivity 
analysis for the hydrologic parameters in the GWLF-E model was performed by altering each 
parameter over its range of acceptable values to see how it affected streamflow, 
evapotranspiration, runoff, and subsurface flow.  
 
We separated the existing periods of record for each gage t include 1 year of model spin up and 
approximately equal number of years for calibration and validation. Each model was calibrated 
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by altering the hydrologic parameters from most sensitive to least sensitive to obtain the best 
match between predicted and observed runoff volumes with model performance based on R2 and 
the Nash-Sutcliffe Efficiency (NSE). Because of limited time series water quality data, modeled 
nutrient loads were compared to the monitoring data from the Trail Creek Watershed Partnership 
to confirm that they fell within observed range.  
 
Objective 2: 
We first conducted a comprehensive literature review to identify conservation practices in urban 
and agricultural settings that reduce nutrient, sediment, and pathogen loading in watersheds. We 
generated a list of conservation practices that individuals/communities could potentially adopt 
with a focus on reducing urban and agricultural runoff, in consultation with our IISG and other 
stakeholder partners and additional water quality experts from Purdue Extension. We then 
developed and administered a human dimensions survey, targeting Porter and LaPorte Counties 
in Northwest Indiana.  
 
Data for this study was collected through a household survey that was distributed to Porter 
County and LaPorte County residents from February to April 2018. Although watershed 
boundaries do not coincide with the county boundaries, the East Branch–Little Calumet River 
watershed is mostly located in northern Porter and LaPorte Counties and the Trail Creek 
watershed is mostly located in LaPorte County. Thus, we targeted residents in these two counties 
for our survey. To inform the development of the survey questionnaire, 12 face-to-face, semi-
structured interviews were conducted with water quality professionals who had experience 
working in the East Branch-Little Calumet and Trail Creek watersheds from October to 
November 2017. 
 
For the resident survey, because we are interested in understanding willingness to adopt water 
quality improvement behaviors and the associated role of personal and social norms across the 
rural to urban gradient, we needed to define and sample our resident types of interest. To do so, 
we overlayed block groups from the 2010 U.S. Census and land cover types from the 2011 
National Land Cover Data (NLCD) in the software program ArcGIS Pro 2.2. For each block 
group in Porter and LaPorte counties, we determined the majority land cover type excluding 
open water, grassland, wetland, forest, industrial, and commercial coverage. Once the majority 
land cover type was determined through zonal statistics, an overlay of small-agriculture, 
large/medium agriculture, and rural residential shapefiles was added. We were then able to 
categorize block groups from the 2010 U.S. Census into five resident groups of interest: urban 
residential, suburban residential, rural residential, small agriculture, and large/medium 
agriculture. The urban residential group was defined as individuals residing in medium intensity 
or low intensity developed areas according to the 2011 NLCD data. The suburban residential 
group included residents living in open space developed land, low intensity developed land, or 
barren land classes according to the 2011 NLCD data. Adapting definitions from Perry-Hill and 
Prokopy (2014), we defined medium/large agricultural residents as individuals who are rural and 
have at least 50 acres of cultivated crops or pasture/hay; small agricultural residents as 
individuals who are rural and have less than 50 acres of cultivated crops or pasture/hay; and, 
rural, non-farming residents as individuals who are rural but do not have crops or hay/pasture. 
Both agricultural groups were designated by the cultivated crops classification in the 2011 
NCLD and county parcel data taken from the Indiana Department of Homeland Security (IDHS). 
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To generate the rural residential group, the locations of houses outside of incorporated cities and 
towns were obtained from the 2015 IDHS County Address Points geodatabase for both LaPorte 
and Porter Counties. Each address point with a valid house number was considered a rural 
residential point and was given two-acre buffer around the residence. The two-acre buffer was 
determined by averaging the area of influence around the house as indicated by fencing, shrub 
lines, and mowed lawns across 120 houses over both watersheds. Based on the classification of 
each Census block and how we defined the five resident groups of interest, we were able to 
reclassify each Census block as part of the five resident groups.  
 
Our calculated sample size was 2,600 across five groups based on power calculations for a small 
to medium effect size, so we decided to draw a stratified random sample of 560 individuals from 
each residential group containing all Census blocks classified as part of that resident group. To 
do so, we purchased mailing addresses of residents from SSI Global 
(https://www.surveysampling.com/) and Farm Market ID (http://www.farmmarketid.com/). SSI 
Global possesses an extensive list of residents in Porter and LaPorte counties. We provided SSI 
Global our classification of each Census block, and SSI Global made a complete list of addresses 
in all Census blocks that belong to each resident group and drew a random sample of 560 
addresses from each list. Together, they drew a total sample of 2,800 individuals. To ensure 
sufficient representation of agricultural residents, an additional 816 individual records were 
purchased from FarmMarketID, which represents their available grower records for Porter and 
LaPorte counties. These addresses were added to the list of 2,800 addresses from SSI Global. We 
removed 750 addresses that were duplicates, invalid according to the U.S. Postal Service, or 
corporate farms for a final sample size of 2,866.  Following a modified Tailored Design Method 
(Dillman et al., 2014), we sent five waves of mail (including three survey waves and two 
postcard waves) to all residents in our list, and included a $2 bill as a token of appreciation with 
our first survey packet. A total of 386 survey questionnaires were returned because of inaccurate 
addresses or deceased individuals, and 1,066 survey questionnaires were completed and returned, 
giving us a final response rate of 43%. 
 
As previously mentioned, the development of the survey questionnaire was informed by our 
qualitative interview results and the Theory of Planned Behaviors sample questions (Ajzen & 
Fishbein, 1980; Ajzen, 2005; Ajzen, 1991). We also drew on a number of existing survey items 
from The Social Indicator Planning and Evaluation System (SIPES) for Nonpoint Source 
Management (Genskow & Prokopy, 2011). The final survey questionnaire consisted of 26 
binary, Likert-scale, and multiple choice questions spanning seven sections: (1) residential 
classification questions, (2) general knowledge of and attitudes towards surface water resources, 
(3) conservation practices to improve water quality, (4) attitudes towards conservation practices 
to improve water quality, (5) social motivations to improve water quality, (6) water quality 
improvement program incentives and barriers, and (7) demographics. In the first section, we 
asked survey respondents a series of questions to self-determine their resident group which we 
used as the actual resident group variable for subsequent analyses.  
 
In addition to the 26 survey questions, the survey instrument contained an experimental 
component in the form of an information page in the survey booklet. Individual residents in the 
final sample were randomly assigned into either a treatment or control group and were sent the 
corresponding survey questionnaire. The control information page was designed to mimic a type 
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of commonly used flyer or information sheet about NPS pollution that would be given out by 
federal, state and local water resource professionals in the region. This page included general 
information organized in four sections: (1) a definition of NPS pollution, (2) what contributes to 
NPS pollution (i.e., general causes), (3) what issues are associated with NPS pollution (i.e., 
impacts), and (4) what I can do to help (i.e., suggested practices individuals can use to reduce 
NPS pollution. The treatment information page provided the exact same information in the 
aforementioned four sections as did the control information page, with the addition of a section 
that provided a short statement about a recent study conducted by Purdue University and five pie 
charts from this study. The short statement explained that a study in the East Branch-Little 
Calumet and Trail Creek watersheds found exactly how much each of the five major land uses 
(i.e., small agriculture, large agriculture, rural residential, suburban, urban) in the two watersheds 
contributes to each of four NPS pollutants (i.e., nitrogen, phosphorus, sediment, E. coli). This 
treatment information page also contained four pie charts each showing the percentage of each 
NPS pollutant coming from each land use, with an additional pie chart showing the percentage of 
land area in each land use across the two watersheds. The purpose of the information treatment 
was to determine if providing specific information to residents about their contribution to 
pollution would trigger a sense of personal responsibility that would ultimately lead to intention 
to adopt water quality improvement practices. The exact percentages used in the pie charts were 
drawn from the modelling results of NPS pollution produced by our collaborators from the 
Department of Agricultural and Biological Engineering at Purdue University. The treatment and 
control information pages were designed to be visually identical with the same layout, same 
background picture, and same font style and size. The only difference between the two was the 
aforementioned section about the Purdue study. An identical question about likelihood to adopt 
water improvement practices was asked before the information page in the survey booklet and 
immediately after the information page for both treatment and control groups. 
 
To analyze the data, we first examined the potential non-response bias. As a proxy to detect 
differences between respondents and non-respondents, we compared responses from early first-
wave survey respondents (n=63) and third-wave survey respondents (n=83) with respect to 
respondents’ demographic characteristics, self-reported likelihood of adoption, attitudes toward 
conservation practices to improve water quality, and familiarity with such practices (Armstrong 
& Overton, 1977). No statistically significant differences (p<0.05) were detected except for age; 
respondents in the third (last) wave were younger on average than those in the first wave. We 
also compared respondents’ demographic characteristics with average characteristics of Porter 
and LaPorte county residents according to the 2010-2017 Census data. Our respondents on 
average were older, more often male, more often white, wealthier, and more educated. This 
suggests potential non-response biases and a need for using caution when interpreting the survey 
results. Missing data was also examined to explore any systematic non-response. For variables of 
interest, the number and percentage of missing responses were calculated. In addition, we 
explored which, if any, variables were consistently missing in combination with other variables 
of interest. No systematic non-response was found.  
 
Univariate descriptive statistics were calculated to assess variable distributions and determine if 
any outliers existed; none were found. Bivariate relationships were explored using (1) Pearson 
chi-square test for associations between two categorical variables, (2) Fisher’s exact test for 
associations between two categorical variables when chi-square assumptions were violated, and 
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(3) Kruskal-Wallis H test for associations between variables as a non-parametric alternative to 
one-way ANOVA. Where Kruskal-Wallis H test was conducted, a Bonferroni corrected p-value 
is also provided for more conservative inference (Armstrong, 2014). Responses from the 
large/medium agriculture group and those from the small agriculture group were combined for 
Kruskal-Wallis H tests due to the low response rate of farmers (Pennings et al., 2002; Ridolfo et 
al., 2013). Three social norm variables were constructed by using a number of survey items that 
were designed to capture the different types of norms. Specifically, each social norm variable 
was created by averaging a set of survey items for a given norm. High internal reliability was 
confirmed by the fact that calculated Cronbach alpha values were well above 0.7.  
 
We also constructed an empirical model to assess factors influencing respondents’ likelihood to 
adopt water quality improvement practices. The response variable (ADOPTBEFORE) was the 
self-reported likelihood of adoption before the information page. ADOPTBEFORE took value 1 
if a respondent reported “likely” or “very likely” to adopt any conservation practice to improve 
water quality in the next year and 0 otherwise (on a five-point Likert scale with 1=very unlikely, 
2=unlikely, 3=neither unlikely nor likely, 4=likely, 5=very likely). ADOPTBEFORE was 
modeled as a function of 20 explanatory variables informed by the literature and our specific 
interest in different types of social norms. Three of these explanatory variables were composite 
scores measuring three types of norms: descriptive norm, subjective norm, and normative social 
influence. In the survey, each type of norm was measured using a number of survey questions. 
Responses to each set of norm-focused survey questions were highly correlated according to the 
Cronbach alpha tests. Therefore, we generated a composite score for each type of norm by 
averaging responses across each set of survey questions. Four additional composite scores were 
calculated and used as explanatory variables, measuring perceptions of personal impact on water 
pollution, perceptions of humans’ impact on water quality, perceived severity of potential water 
pollution sources, and self-reported importance of being a good example to others. They were 
also generated by averaging responses across each set of internally consistent survey questions.  
 
To estimate this empirical model, binary logistic regression was used and probabilities were 
assigned to each of the two possible outcomes of ADOPTBEFORE. For a binary response 
variable Y and a vector of explanatory variables X, these probabilities are:  

𝑃𝑃(𝑌𝑌i = 1) = 𝑃𝑃i =  
𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽

1 + 𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽
 

𝑃𝑃(𝑌𝑌i = 0) = 1 −  𝑃𝑃i =  1 −  
𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽

1 + 𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽
=

1
1 + 𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽

 
where Pi represents the probability of a respondent reporting likely or very likely to adopt a 
water quality improvement practice in the next year, β is a vector of regression coefficients, and 
βXi is a standard notation representing the right-hand side of a regression model. Without 
transformation, binary logistic regression results are often reported in terms of odds ratios which 
is the relative odds of occurrence of an outcome given a variable of interest (Szumilas, 2010). As 
such, the coefficient estimates in a logistic regression do not carry the implication of per unit 
impact of individual explanatory variables as in the case of ordinary least squares regression 
(Mehmood & Zhang, 2005). To draw such implications, marginal effects for each explanatory 
variable were calculated and reported as follows: dPi/dXi = Pi(1−Pi)β. For the purpose of this 
study, the interpretation of the logistic regression results is mainly focused on the identification 
of significant explanatory variables and their associated signs. 



Page 9 of 20 

 
To determine the role of information on respondents’ self-reported likelihood to adopt water 
quality improvement practices, we constructed an empirical model that was similar to the one 
just described, but with a different response variable and two additional explanatory variables. 
The response variable for this model was the self-reported likelihood of adoption after the 
information page (ADOPTAFTER). Similar to ADOPTBEFORE, ADOPTAFTER also took 
value 1 if a respondent reported “likely” or “very likely” to adopt any conservation practice to 
improve water quality in the next year and 0 otherwise. The two additional explanatory variables 
were TREATMENT, indicating whether a respondent was in the treatment or control group, and 
ADOPTBEFORE, as previously defined. For both logistic regression models, variance inflation 
factor (VIF) was also calculated. The VIF for both the ADOPTBEFORE model and the 
ADOPTAFTER model was 1.34, which is well below 10, the standard for detecting 
multicollinearity in regressions.  
 
We also explored changes in residents’ self-reported likelihood of adoption before and after the 
information page (regardless of which information page). To do so, we created a new variable 
(ADOPTCHG) by subtracting the before-information self-reported likelihood of adoption from 
the after-information self-reported likelihood of adoption. As such, ADOPTCHG was an ordinal 
variable with an interval of 1, ranging from -4 to 4. Pearson chi-square tests were used to explore 
bivariate relationship between ADOPTCHG and other categorical variables. When assumptions 
for Pearson chi-square tests were violated, Fisher’s exact tests were used instead. All analyses 
were conducted in software packages Stata 12.0 and R 3.5.1. 
 
Objective 3:  
The modeling approach described in detail under Objective 1 is currently being applied to 
aggregate the potential N, P, sediment, and E. coli removal at the watershed scale based upon the 
willingness of different resident groups to adopt conservation practices. We have developed 
BMP implementation scenarios based on both biophysical site suitability and watershed 
residents’ willingness to adopt conservation practices determined through Objective 2. These 
BMP scenarios include: (1) implementation of urban/suburban BMPs in all available land, (2) 
implementation of agricultural BMPs in all available land, and 3) implementation of both 
urban/suburban and agricultural BMPs at percentages in which the residents were both 
knowledgeable and willing to implement them. We have also created multiple BMP 
implementation scenarios to maximize water quality improvements by mimicking scenarios 
developed by Liu et al. (2015). BMPs will be applied individually and in-series for a selected 
areal coverage (hectares) to identify the most effective practices for urban, agricultural, and 
mixed land usage. The areal coverage is then systematically increased to identify the relationship 
between treated area and level of mitigation. This is particularly important as we seek to identify 
thresholds in the response, which will likely be nonlinear as a function of BMP implementation. 
Results will be aggregated for all of these scenarios by each of the five groups (i.e., urban 
residential, suburban residential, rural residential, small agricultural, agricultural) at the sub-
watershed (HUC-12) and watershed (HUC-10) scales to quantify nutrient loading reductions as 
compared to the baseline scenario (Objective 1). While we recognize that spatial arrangement of 
BMPs on the landscape can have important consequences for water quality, the focus on 
aggregated BMP implementation by agricultural and residential groups allows us to effectively 
address Objective 3 with a simplified modeling framework.  
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Results 

The average age of respondents was 59 years old (SD=14, Min=21, Max=96) and over half of 
respondents (63%) were male. Of 1,042 respondents, 36% had obtained a Bachelor’s or graduate 
degree. The majority of respondents (91%) owned their home. Over half (57%) of respondents 
shared responsibility for making decisions about their property or home with someone else, and 
approximately 8% indicated that someone else was entirely responsible for making decisions 
about their property or home. Thirty percent of respondents reported an annual income before tax 
of less than $50,000. For those respondents who were farmers, the average farm size was 95.4 
acres (SD=222.6, Min=0.25 acres, Max=1,500 acres).  
 
Across all resident groups, over half of respondents (55%) reported being somewhat aware or 
very aware of conservation practices to improve water quality on a four-point Likert scale 
(1=never heard of them, 2=slightly aware, 3=somewhat aware, 4=very aware). In general, 
large/medium-scale farmers reported the greatest awareness (somewhat or very aware: 84%) 
followed by small-scale farmers (somewhat or very aware: 64%) and rural residents (somewhat 
or very aware: 55%). No significant associations were found between respondents’ self-reported 
awareness of water quality improvement practices and their education (χ2=12.12, p =0.059) or 
income (χ2=6.22, p =0.399). There was, however, a strong association between self-reported 
awareness and resident group (χ2=25.272, p < 0.05) such that large/medium-scale farmers had 
greater self-reported awareness than did any other resident groups.  
 
When asked about interest in learning more about conservation practices to improve water 
quality, 68% of respondents reported they were interested in receiving more information, with 
small-scale farmers reporting the greatest interest (73%). In general, a majority of respondents 
(82%) reported a somewhat or very positive attitude towards conservation practices to improve 
water quality on a five-point Likert scale (1=very negative, 2=somewhat negative, 3=neither 
negative nor positive, 4=somewhat positive, 5=very positive). This trend was observed across all 
resident groups, and there was no statistically significant difference across resident groups. 
We asked respondents to indicate their agreement with two opposite statements about water 
quality in local waterbodies. Twenty percent of respondents agreed or strongly agreed with the 
statement “I think water quality in local waterbodies is excellent” (on a five-point Likert scale 
with 1=strongly disagree, 2=disagree, 3=neither disagree nor agree, 4=agree, 5=strongly agree), 
and the level of agreement was relatively consistent across all resident groups (Figure 8). 
Relatedly, 81% of respondents agreed or strongly agreed with the statement “I am concerned 
about water quality in local waterbodies” (also on a five-point Likert scale), with urban, 
suburban, and rural residents reporting greater levels of concern than farmer residents.  
 
When asked about sources of water pollution, the top three problem sources were (1) use of 
fertilizers, manure, and/or pesticides for crop production with 70% of respondents who 
considered it a moderate or severe problem on a four-point Likert scale (1=not a problem, 
2=minor problem, 3=moderate problem, 4=severe problem), (2) excessive use of lawn fertilizer 
and/or pesticides with 68% who considered it a moderate or severe problem, and (3) use of salt 
and sand on paved roads with 61% who considered it a moderate or severe problem. Perceptions 
of water pollution sources differed by resident group. For example, urban, suburban, and rural 
residents viewed the use of fertilizers, manure, and/or pesticides from crop production as the 
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most problematic source of water pollution whereas small- and large/medium-scale farmers were 
less concerned about this source. Urban and suburban residents tended to consider improperly 
maintained septic tanks as a more problematic source of water pollution than rural residents. 
Residents did not significantly differ in terms of their personal norms (χ2=6.731, p=0.081; with 
Bonferroni correction, p=0.162). In terms of social norms, farmers perceived stronger descriptive 
norms than other resident groups (χ2=19.761, p<0.05; with Bonferroni correction, p<0.05). 
Farmers also generally reported stronger subjective norms than other resident groups (χ2=7.932, 
p=0.05; with Bonferroni correction, p=0.20). However, the significant association between being 
a farmer and perceiving subjective norms disappears when using a Bonferroni correction. There 
was also no statistically significant difference among resident groups in terms of their perceived 
normative social influence (χ2=6.07, p=0.11; with Bonferroni correction, p=0.37). 
 
There was no statistically significant associations between gender and normative social influence 
(χ2=0.363, p=0.55). However, male respondents tended to perceive stronger subjective norms 
than female respondents (χ2=7.487, p<0.05; with Bonferroni correction, p=0.0372). Male 
respondents also reported higher perceived descriptive norms (χ2=29.558, p<0.05; with 
Bonferroni correction, p<0.05). Personal norms also differed by gender when utilizing raw p-
value, but this difference disappeared when applying the Bonferroni correction (Fisher’s 
exact=0.063; with Bonferroni correction, p=0.378). In terms of education, there was no 
statistically significant associations between level of education and personal norms (Fisher’s 
exact=0.758), normative social influence (χ2=1.735, p=0.8845), or subjective norms (χ2=2.265, 
p=0.8115). Respondents with at least a high school degree or GED tended to perceive stronger 
descriptive norms than those who had less education (χ2=27.925, p<0.05; with Bonferroni 
correction, p<0.05). With respect to income, no statistically significant associations were found 
between income and personal norms (Fisher’s exact=0.082; with Bonferroni correction, Fisher’s 
exact=0.492) or subjective norms (χ2=7.479, p=0.1874). Respondents with lower income tended 
to perceive stronger normative social influence, but this significant relationship disappeared 
when applying the Bonferroni correction (χ2=13.159, p<0.05; with Bonferroni correction, 
p=0.1314). Respondents with higher income tended to perceive stronger descriptive norms 
(χ2=27.7128, p<0.05; with Bonferroni correction, p=0.005). 
 
We found no statistically significant associations between respondents’ self-reported awareness 
of water quality improvement practices and normative social influence (χ2=2.173, p=0.5374). 
However, respondents who were more aware of water quality improvement practices were more 
likely to perceive stronger subjective norms (χ2=12.911, p<0.05; with Bonferroni correction, 
p=0.0288), perceive stronger descriptive norms (χ2=111.341, p<0.05; with Bonferroni correction, 
p<0.05), and possess stronger personal norms (χ2=13.097, p<0.05; with Bonferroni correction, 
p=0.0264) than those who were less aware. Similarly, we found no statistically significant 
associations between respondents’ attitudes towards water quality improvement practices and 
normative social influence (χ2=7.039, p=0.1338). However, respondents with more favorable 
attitudes tended to report stronger subjective norms (χ2=48.129, p<0.05; with Bonferroni 
correction, p=0.0006), stronger descriptive norms (χ2=31.551, p<0.05; with Bonferroni 
correction, p<0.05), and stronger personal norms (χ2=112.816, p<0.05; with Bonferroni 
correction, p=0.0006). 
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Despite the generally positive attitudes, less than half (41%) of respondents indicated that they 
were either likely or very likely to install any water quality improvement practice in the next 
year. By resident group, small- and large/medium-scale farmers reported greater likelihood of 
adopting any practice in the next year than other resident groups (53% and 54% likely and very 
likely, respectively; on a five-point Likert-scale with 1=very unlikely, 2=unlikely, 3=neither 
unlikely nor likely, 4=likely, 5=very likely; Figure 7). Rural residents and suburban residents 
reported similar likelihood (41% and 40% reported likely or very likely, respectively). Urban 
residents reported the lowest likelihood (38% reported likely or very likely). However, this 
difference was not statistically significant. In terms of demographics, a negative association 
existed between respondents’ likelihood and age (χ2=117.53, p < 0.05). Positive associations 
existed between respondents’ likelihood of adoption and their education (χ2=38.97, p < 0.05), 
income (χ2=40.67, p < 0.05), and owning their home (χ2=11.466, p < 0.05). Respondents’ 
likelihood of adoption was also positively associated with their self-reported awareness of water 
quality improvement practices (χ2=88.10, p < 0.05), although there was no statistically 
significant association between likelihood to adopt and general attitudes towards conservation 
practices.  
 
The logistic regression model for assessing factors influencing residents’ likelihood of adoption 
(ADOPTBEFORE) was significant overall (χ2=234.94, p<0.001) (Table 8). Among all the 
demographic variables, age was the only significant one (p<0.001). Older respondents tended to 
report lower likelihood to adopt conservation practices to improve water quality than did 
younger respondents. When controlling for all the other factors, respondents’ resident group had 
no effect on their self-reported likelihood of adoption. Generally, respondents who perceived 
more problems with water pollution in their area, who were more aware of water quality 
improvement practices, and who had more positive attitudes towards these practices were more 
likely to report intention to adopt a practice in the next year (p=0.013, p=0.004, and p=0.023, 
respectively). Likewise, respondents who felt a sense of responsibility to adopt conservation 
practices to improve water quality tended to report greater likelihood of adoption (p<0.001). 
Additionally, respondents who had noticed more of their family, friends, neighbors, or others in 
their community adopting water quality improvement practices (i.e., perception of descriptive 
norm) were more likely to report intention to adopt themselves (p=0.067). Those who perceived 
stronger subjective norm associated with the adoption of water quality improvement practices 
(i.e., perceived expectation from family, friends, neighbors, and others in community to adopt) 
also reported higher likelihood of adoption (p<0.001). Finally, respondents who had previously 
looked for information about water quality problems in their local waterbodies were also more 
likely to report intention to adoption (p=0.012).  
 
The logistic regression model for understanding the role of information on respondents’ self-
reported likelihood to adopt water quality improvement practices was also significant overall 
(χ2=389.17, p<0.001) (Table 9). Similar to the ADOPTBEFORE model, significant explanatory 
variables in the ADOPTAFTER model included respondent’s age (p<0.001), attitude towards 
water quality improvement practices (p=0.001), a sense of responsibility for adopting these 
practices (p=0.065), and perception of descriptive norm (p=0.020). Valuing being a good 
example to family, friends, neighbors, and others in their community was also a significant 
variable in the ADOPTAFTER model (p<0.001). Perceiving more problems with water pollution 
in their area and being aware of water quality improvement practices were no longer significant, 
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nor was having previously looked for information about water quality problems in their local 
waterbodies. While perception of subjective norm also became insignificant, having a stronger 
personal norm for keeping water clean became negatively associated with reporting a higher 
likelihood of adoption after reading the information page (p=0.017). Importantly, TREATMENT 
was not a statistically significant predictor in the model whereas ADOPTBEFORE (i.e., 
respondents’ self-reported likelihood of adoption prior to reading the information page) was a 
statistically significant predictor of ADOPTAFTER (i.e., respondents’ self-reported likelihood of 
adoption after reading the information page; p<0.001).  
 
We further explored the change of self-reported likelihood of adoption before and after 
respondents read the information page. Overall, ADOPTCHG ranged from -4 to 4, with a mean 
of -0.03 (SD=0.88; Figure 19a). Using a Fisher’s Exact Test, we found that ADOPTCHG was 
not associated with respondents reading either the treatment or control information page (Fisher's 
exact=0.911; Figure 19b). Further, ADOPTCHG did not differ based on respondents’ income 
(χ2=13.5383, p=0.195), education (χ2=9.1279, p=0.520), or whether they rented or owned their 
home (Fisher's exact=0.509). ADOPTCHG did, however, differ between male and female 
respondents (Fisher's exact=0.034). Although the difference was small, male respondents were 
slightly more likely to report decreased likelihood of adoption (mean=-0.04; SD=0.81) than were 
female respondents (mean=-0.01; SD=0.98). Additionally, there was a statistically significant 
association between ADOPTCHG and respondents’ self-reported likelihood of adoption before 
they read the information page (χ2=123.6263, p<0.001). Specifically, for respondents who 
reported being very unlikely or unlikely to adopt water quality improvement practices before the 
information page, 51% reported the same likelihood after the information page while 40% 
reported higher likelihood of adoption; for those who reported being likely or very likely to 
adopt before the information page, 64% reported the same likelihood after the information page 
while 30% reported lower likelihood of adoption; and for those who reported being neither 
unlikely nor likely to adopt before the information page, 62% remained the same while 18% 
reported less likely and 20% reported more likely (Table 10). 
  
The GWLF-E model for the Trail Creek and East Branch – Little Calumet River Watersheds was 
generated with the use of the “Model My Watershed” tool that is a part of the Stroud Water 
Research Center’s WikiWatershed initiative. This tool is meant to help with TMDL planning as 
an all-in-one application that allows you to import all required inputs needed for the GWLF-E 
program from widely accepted national datasets. While the generalizability is advantageous, 
several of the calculated parameters were modified based on higher resolution data including 
available water capacity (AWC), animal populations, total stream length, total agricultural 
stream length, percent impervious cover, CN, soil erodibility (K), evapotranspiration cover 
coefficient, and percent of area with tile drainage. By exporting the “Model My Watershed” tool 
results and running GWLF-E separately, we also were able to use more detailed local weather 
data.  
 
This approach also allowed us to modify the NLCD land cover classifications to match those 
identified in Objective 2 (Table 1). Rural residential households are not included in publicly 
available land use data products so were created as part of this project through the use of aerial 
photography and county address records. Rural residential households were defined to include all 
residential address points that didn’t lie within incorporated townships or cities. We designated 
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an individual rural residential area to include the area of human influence around the home (e.g. 
area of property mowed, area within fencing/shrub-boundary, etc.). The size of the rural 
residential plot was measured at 60 houses in each watershed by digitizing aerial photographs. 
Each homestead area was recorded and the average was 2 acres. This layer was incorporated into 
the NLCD and effectively transitioned households from low-density residential in the 
unincorporated regions to rural residential. Making this land use classification separate and 
explicit allowed these areas to be modeled as a separate class with representative impervious 
cover and contaminant loading. This transformation was substantial and accounted for 43% of 
the Trail Creek and 40% of the Little Calumet low density residential land use by area (combined 
developed open space and low intensity developed) being modeled as rural residential. This 
process also elucidates rural households that are not recognized by the NLCD and listed as forest 
or grassland.  
 
Table 1: Area by land use classification for each watershed  

Land use Classification Little Calumet Trail Creek 
Urban 749.3 682.2 
Suburban 2,470.1 1,751.6 
Rural Residential 2,445.3 2,144.0 
Large Ag 1,850.7 1,014.6 
Small Ag 2,876.1 1,877.4 
Commercial/Industrial 293.9 266.5 
Forest/Wetland 8,334.9 7,554.5 
Total 19,020.3 15,290.8 

 
The sensitivity analysis for these watersheds revealed available water capacity (AWC) and the 
evaporation cover coefficient (Ket) to be the most sensitive parameters, which was also noted by 
the model developers for the 2003 Trail Creek TMDL. We used this information to guide the 
calibration procedure, focusing on these two parameters to determine the input parameter set that 
best matched observed data. We are currently analyzing these results to identify differences 
between land uses.  
 
The sensitivity analysis for these watersheds revealed available water capacity (AWC) and the 
evaporation cover coefficient (Ket) to be the most sensitive parameters, which was also noted by 
the model developers for the 2003 Trail Creek TMDL. We used this information to guide the 
calibration procedure, focusing on these two parameters to determine the input parameter set that 
best matched observed data. Modeling results showed diverging patterns with climate. For 
example, in 2017 (a representative wet year), sediment, total nitrogen, and total phosphorus loads 
were positively correlated with precipitation, whereas fecal coliform concentrations peaked in 
the summer of a representative dry year (2012) (Figure 1). We are currently analyzing these 
results to identify differences between land uses. 
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Figure 1: Monthly precipitation, total suspended sediment (TSS), total nitrogen (TN), and fecal 
coliform from representative dry (2012), average (2015), and wet (1017) years in the Little 
Calumet Watershed. 
 
From the survey results, the 20 BMPs in the questionnaire were broken into 3 types, Individual 
Scale, Community Scale, and Agricultural. The individual scale included BMPs that are typically 
implemented on only one property parcel whereas the community scale included those BMPs 
that would take multiple landowner approval to implement. Since we do not know the location of 
individual landowners and their combined approval of community scale BMPs, we elected to not 
include these in the willingness scenarios. Residents were questioned on both Knowledge of 
BMPs and Likelihood to install BMPs (within the next year). Based on the response categories, 
we created 3 groups of BMP implementation measure including 1) Knowledge of BMP, 2) 
Likely to Implement BMP, 3) Not Unlikely to Implement.  We are currently finalizing the 
implementation scenarios based on the knowledge and likeliness to implement BMPs. The 
targeted BMPs include rain barrels, rain gardens, permeable pavement and green roofs in urban 
and suburban areas as well as conservation tillage, cover crops, rotational grazing, composting 
manure, and grass strips in agricultural regions. We are also creating multiple BMP 
implementation scenarios to maximize water quality improvements (Liu et al. 2015). BMPs will 
be applied individually and in-series for a selected areal coverage. The areal coverage is then 
systematically increased to identify the relationship between treated area and level of mitigation. 
We will then complete multiple model runs to identify the relationship between treated area and 
level of mitigation in each watershed. 
 

Conclusion and Recommendations 
The adoption of BMPs and LID strategies by watershed residents is important for reducing NPS 
pollution in the United States. Extensive research has explored factors influencing farmers’ 
adoption of BMPs, while considerably less research has focused on urban and suburban 
residents. This research encompassed the urban-to-rural gradient of two counties in northwestern 
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Indiana with mixed land uses. Through a household survey of residents in Porter and LaPorte 
counties, this research assessed watershed residents’ awareness of, attitudes towards, and 
likelihood of adopting water quality improvement practices, as well as factors influencing their 
likelihood of adoption, particularly the role of norms and the role of information about 
responsibility. We used an integrated approach using watershed models combined with survey 
information to better inform both aspects: the survey included an information treatment based on 
modeling results of the current conditions in the watershed and the future scenarios in the model 
will be based on landowners willingness and knowledge. While the last component is not yet 
complete, we will follow up with an addendum when it is finalized. Nevertheless, this research 
offers the following three considerations for water quality professionals and researchers. 
 
First, sometimes watershed residents may exhibit a general awareness of and positive attitude 
towards water quality improvement practices; however, many may not have an immediate plan 
to adopt any practices, and not all those who express an interest in adoption would end up 
adopting any practices. Thus, it important for water quality programs to be aware of various 
external constraints that may ultimately deter watershed residents from transitioning from a 
favorable intention to actual adoption (e.g., Ajzen, 2005; Blackstock, Ingram, Burton, Brown, & 
Slee, 2010; Dutcher, Finley, Luloff, & Johnson, 2004; Quimby & Angelique, 2011; Rogers, 
2003; Steg & Vlek, 2008; Wall, 1995). Several important barriers were identified in this 
research, including watershed residents’ not knowing enough about specific practices they could 
adopt for their own home or property, concerns about difficulties in installing a practice, and 
concerns about maintaining the practice. Reducing these barriers to adoption will be essential for 
water quality programs. Generally speaking, education and outreach programs have 
demonstrated success when they are comprehensive, adaptive, representing key stakeholder 
inputs, and specific to stakeholder needs and concerns (Loomis, Bair, & Gonzalez-Caban, 2001; 
Marynowski & Jacobson, 1999). Similarly, water quality programs could benefit from 
highlighting benefits associated with water quality improvement, such as improved general 
environmental quality and reduced flash flood risk, at least in the context of this research. 
 
Second, this research expanded understanding of personal and social (descriptive and subjective) 
norms in motivating watershed residents’ adoption of water quality improvement practices. 
Specifically, this research suggests that urban, suburban, rural non-agricultural, and rural 
agricultural residents may differ in their perceived descriptive and subjective norms. Because 
descriptive and subjective norms are important for watershed residents in terms of their interest 
in water quality improvements, more research is needed to understand why such difference in 
social norms exists across resident group. So far, few studies have examined and compared 
personal and social norms across segments of population in the context of water quality 
management. However, this research generated some evidence to suggest that rather than 
focusing on increasing people’s personal norms about water quality protection, water quality 
programs could benefit greatly from developing and implementing outreach and communication 
strategies that utilize social norms to catalyze behavioral change in the context of water quality 
improvement. 
 
Finally, traditional outreach and education programs tend to assume that people do not adopt 
sustainable resource management and conservation practices because they lack information or 
have insufficient knowledge, and that if they were provided with information, they would adopt 
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desired practices (e.g., Burgess & Harrison, 1998). While this research showed that residents 
may benefit from information about installation and maintenance of water quality improvement 
practices, it also provided evidence suggesting a limited role that information could play in 
shaping water quality improvement behaviors when holding other factors constant. Particularly, 
this research showed no difference in residents’ self-reported likelihood of adopting water 
quality improvement practices whether they were provided with specific information about the 
responsibility of different resident groups for NPS pollution or generic information about NPS 
pollution—in fact, neither seemed to have motivated change in self-reported likelihood of 
adoption. Several reasons have been posited for why specific information about the 
responsibility of different resident groups for NPS pollution may be ineffective in changing 
willingness to engage in resource management and conservation behaviors, including but not 
limited to: the strength of contextual forces (Stern, 1999), barriers to action such as cost or 
inconvenience (Steg & Vlek, 2008; Stern, 1999), lack of emotional response (Kollmuss & 
Agyeman, 2002), and cognitive dissonance (Festinger, 1957; Kollmuss & Agyeman, 2002). 
More research is needed to investigate when and why information works (or not) in the context 
of water quality management. Moreover, this research found that watershed residents responded 
to information about NPS pollution differently based on their initial intention to adopt water 
quality improvement practices prior to receiving any information. As such, understanding how 
and why information may have different effects on different segments of population would be 
important. One practical consideration for water quality programs is to tailor their outreach to 
target favorable and less favorable watershed residents using different information content, 
types, formats, and/or sources as a way to maximize positive effects of information while 
minimizing potential negative effects. Given the complex role of information, it is important to 
keep in mind that not all water quality improvement information is equally effective or 
ineffective. However, this research provides important preliminary evidence suggesting that 
water quality programs may want to consider moving away from providing generic information 
about NPS pollution and water quality improvement practices to focusing on actionable 
behaviors that are specific to different resident types and how they manage and live on their 
properties.   
 
Potential Applications, Benefits and Impacts  
Although our project does not have direct benefits and impacts to stormwater management 
organizations in Indiana, learning from our project can be insightful to help these organizations 
understand the human dimensions of the adoption of water quality improvement practices and 
integrate human dimensions insights into their water quality management programs. Specifically, 
our aforementioned three learnings/recommendations can be helpful for these organizations. 
First, we found that watershed residents may exhibit a general awareness of and positive attitude 
towards water quality improvement practices; however, many do not know enough about 
specific practices they could adopt for their own home or property, have concerns about 
difficulties in installing a practice, and have concerns about maintaining the practice. Second, we 
found that descriptive and subjective norms are important for watershed residents in terms of 
their interest in water quality improvements, and we suggest that rather than focusing on 
increasing people’s personal norms about water quality protection, water quality programs could 
benefit greatly from developing and implementing outreach and communication strategies that 
utilize social norms to catalyze behavioral change in the context of water quality improvement. 
Third, we found that although residents may benefit from information about installation and 
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maintenance of water quality improvement practices, information may only play a limited role in 
shaping water quality improvement behaviors; instead, water quality programs may want to 
consider moving away from providing generic information about NPS pollution and water 
quality improvement practices to focusing on actionable behaviors that are specific to different 
resident types and how they manage and live on their properties. These potential applications of 
our research results could be carried out in both short and long terms.  
 
International Implications  
Although our project does not have direct international implication, learning from our project can 
be insightful to help international scholars to use similar approaches to understand the human 
dimensions of the adoption of water quality improvement practices and to integrate human 
dimensions insights into water quality modeling. 
 
Data Management Plan 
We generated human dimensions data and biophysical data through this proposed research. We 
recorded the human dimensions data in accordance with Purdue University’s Institutional 
Review Board human subject requirements. We are storing interview and survey data in 
password-protected computers only accessible to co-PIs and graduate research assistant in this 
research. The biophysical data included synthesis of publicly available time series values of river 
discharge and water chemistry, as well as model results at the watershed outlets. In addition to 
the data themselves, all data sets contained metadata sufficient to explain methods used to collect 
and analyze results. In the next two years, we will store de-identified human dimensions data and 
biophysical data through its lifecycle in Purdue University Research Repository (PUUR). Links 
to data stored in PURR and to peer-reviewed publications from this research will be posted on 
co-PI’s university faculty websites. We will direct all requests for data to these websites as well.  
 
Section C. Outputs 
 
Media Coverage: None 
 
Publications, Theses, Dissertations 
• Domenech, J. 2018. Assessing the role of norms and information in shaping residents' 

intentions to adopt water quality improvement practices across urban-to-rural landscapes. 
Master of Science Thesis. West Lafayette, In: Purdue University. 

• Mills, J. 2019. Evaluating the effectiveness of landowner adoption of water quality 
improvement practices in mixed land-usage watersheds. Master of Science Thesis. West 
Lafayette, In: Purdue University. Expected August 2019. 

 
Undergraduate/Graduate Names and Degrees 
• Jennifer Domenech; M.S.; Natural Resource Social Science (2017-2018); Purdue University 
• Jonathan Mills; M.S.; Agricultural and Biological Engineering; Purdue University (2018-

present) 
• Rachel Scarlett; Ph.D.; Interdisciplinary Ecological Science & Engineering (and Agricultural 

and Biological Engineering); Purdue University (2018-present) 
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• Priyanka Shankar; B.S. in Sustainable Biomaterial —Process and Product Designing; 
Undergraduate Research Assistant on the project; Purdue University (January 2017-May 
2018) 

• Kasha Halbleib; B.S. in Natural Resources and Environmental Science; Undergraduate 
Research Assistant on the project; Purdue University (January 2017-May 2018) 

 
Other Outputs 
• Wabash River Enhancement Corporation. 2018. What You Can Do at Home for the Wabash 

River [Brochure]. Lafayette, IN: Wabash River Enhancement Corporation.  
• Wabash River Enhancement Corporation. 2018. Wabash River Friendly Home [Brochure]. 

Lafayette, IN: Wabash River Enhancement Corporation. 
 
Patents/Licenses:  
Not applicable 
 
Project Partnerships: 
We work with our partner organizations such as Purdue Extension and Northwestern Indiana 
Regional Planning Commission (NIRPC), to determine the existing BMP implementation in both 
urban and rural land uses based on their knowledge of the watersheds. Various partners also 
helped us identify potential stormwater management professionals with whom we conducted 
semi-structured interviews. In addition, these partners helped us pilot test our survey 
questionnaire before it was launched. Finally, all partners were invited to Jenn Domenech’s MS 
thesis defense, and we will share additional publications from this project with these partners.  
 
Related Projects:  
• Purdue University, Engineering Faculty Conversations (EFC) on Smart Cities Program. 

2019. Sara McMillan (PI), Zhao Ma (co-PI), Brady Hardiman (co-PI), Roshanak Nateghi 
(co-PI). Socio-ecological resilience of urban ecosystems to extreme climate events. $66,680 
(funded). 

 
Awards and Honors:  
• Faculty Fellow, Faculty Leadership Academy for Interdisciplinary Research (FLAIR) 

Fellows Program, Office of the Executive Vice President for Research and Partnerships, 
Purdue University, 2019 (Z. Ma) 

• Nominee for the Outstanding Graduate Mentor/Teacher Award, College of Agriculture, 
Purdue University, 2018 (Z. Ma) 

• Seed for Success Award, Purdue University, 2018 (Z. Ma) 
• William L. Hoover Exemplary Faculty Service Award, Department of Forestry and Natural 

Resources, Purdue University, 2017 (Z. Ma) 
• The Bravo Award, College of Agriculture, Purdue University, 2017 (Z. Ma) 
• Faculty Policy Fellow, Purdue Policy Research Institute, Purdue University, 2017-2018 (Z. 

Ma) 
• D. Woods Thomas Memorial International Support Fund Award, Purdue University, 2018 (J. 

Domenech) 
• International Symposium on Society and Resource Management (ISSRM) Student Subsidy 

Award, International Association for Society and Natural Resources, 2018 (J. Domenech) 
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• Purdue Graduate Student Government/Purdue Graduate School Travel Grant Award, Purdue 
University, 2018 (J. Domenech) 

• Purdue Graduate Student Government Professional Grant Award, Purdue University, 2018 
(J. Domenech) 

• Purdue University Service-Learning Student Grant Program, Purdue University, 2018 (J. 
Domenech) 

• Indiana Watershed Leadership Academy Scholarship, 2017 (J. Domenech) 
• Teaching for Tomorrow Fellow, Purdue University, 2016-17 (S. McMillan) 
• Seed for Success Award, Purdue University, 2018 (S. McMillan) 
• George Washington Carver Fellow, 2015-present (R. Scarlett) 
• Purdue Climate Change Research Center Travel Grant, 2017 (R. Scarlett) 
• TU Dresden International Synthesis Workshop Travel Grant, 2017 (R. Scarlett) 
• Heterotrophic Regimes Workshop Travel Grant, 2018, (R. Scarlett) 
• ABE Departmental Travel Grant (3 awards), 2015-2019 (R. Scarlett) 
• Purdue Graduate Student Government Travel Grant, 2018 (R. Scarlett) 
• ASABE Global Water Security Conference Travel Grant, 2018 (R. Scarlett) 


