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• Abstract 
 
Summarize project, accomplishments and/or results (250 words). Parts of this may be taken from 
your 90-2 project summary form. 
 

Various computer models, ranging from simple to complex, have been developed to simulate 

hydrology and water quality from field to watershed scales. However, many users are uncertain 

about which model to choose when estimating water quantity and quality conditions in a 

watershed. This study compared hydrologic/water quality models including Spreadsheet Tool for 

the Estimation of Pollutant Load (STEPL)-Purdue, Soil and Water Assessment Tool (SWAT), 

High Impact Targeting (HIT), Long-Term Hydrologic Impact Assessment (L-THIA), Pollutant 

Load (PLOAD), Spatially and Temporally Distributed Model for Phosphorus Management 

(STEM-P), Region 5, and ensemble modeling (using STEPL-Purdue, SWAT, L-THIA, PLOAD, 

and STEM-P). Model capabilities, inputs, and underlying methods to estimate streamflow, 

surface runoff, baseflow, total nitrogen (TN), total phosphorous (TP), and sediment were 

examined. Uncalibrated, calibrated, and validated outputs of these models and uncalibrated 

ensemble modeling in estimating water quantity and quality for a 41.5 km
2
 agricultural 
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watershed in Northeastern Indiana were explored, and suggestions were provided on the 

selection and use of models. Models need to be selected carefully based on the simulation 

objectives, data availability, model characteristics, time constraints, and project budgets. 
 
  
• Keywords  
Include a list of five keywords for indexing. 

Hydrology, water quality, computer model, comparison, agricultural watershed.   
  
• Lay Summary 
 
Write a brief, 1-2 paragraph summary of your research project and important findings, using 
language that is understandable by a lay person (i.e., with very limited scientific background). 

 

Various hydrologic/water quality models, which are useful for natural resources protection and 

mitigation of concerns, have been developed. However, which model(s) are the most useful in 

specific cases are not well defined. Hydrologic and water quality models (including STEPL-

Purdue, SWAT, HIT, L-THIA, PLOAD, STEM-P, Region 5, and results of ensemble modeling), 

with varying data requirements, simulation methods, and complexity levels, were compared to 

identify situations in which the models are the most useful. Some of the models will be used in 

the web-based decision support system called Tipping Points and Indicators program, which 

helps decision makers identify impacts of land-based activities that threaten the sustainability of 

ecosystems in their watershed. Within Tipping Points, L-THIA will be used for estimating the 

impacts of urbanization on runoff and water quality, while STEPL-Purdue and SWAT will be 

used to estimate runoff and water quality from agricultural watersheds.  

 

Key findings for the models explored are briefly summarized below. The modified STEPL-

Purdue model is recommended for use in agricultural watersheds based on performance in the 

study watershed, its simplicity, and its ability to estimate the impacts of agricultural management 

practices. The L-THIA model is recommended for use in urbanized watersheds because it can 

estimate the impacts of urban management practices. SWAT, which simulates watershed 

processes more completely, is the most time consuming and difficult to apply model and 

therefore would be useful when more comprehensive analyses are required. Simpler models, 

including STEPL-Purdue, HIT, L-THIA, PLOAD, and STEM-P, are less time consuming and 

easier to set up than SWAT, and require minimum input data but may misrepresent watershed 

processes and provide inaccurate results in some cases. Among these simpler models, STEM-P 

provides more spatial and temporal details but at the expense of computational time. The Region 

5 model can only be applied at field levels. The PLOAD model should be used with caution due 

to the likely need to update pollutant export coefficients based on local conditions. An ensemble 

modeling approach could be used to increase the reliability of predictions when no or limited 

monitored data are available. 

 

The variability of the models for estimating hydrology and water quality is high. Models need to 

be selected carefully based on the simulation purposes, data availability, model characteristics, 

time limits, and project budgets. 
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Section B. Accomplishments 

 
• Introduction  
Include project goals and objectives. 
 

(1) summarize model capabilities, model inputs, and simulation methods of hydrologic and water 

quality models including STEPL-Purdue, SWAT, HIT, L-THIA, PLOAD, STEM-P, and Region 

5; (2) explore uncalibrated, calibrated, and validated outputs of these models and uncalibrated 

ensemble modeling (using STEPL-Purdue, SWAT, L-THIA, PLOAD, and STEM-P) in 

estimating average annual water quantity and quality for a 41.5 km2 agricultural watershed in 

Northeastern Indiana; and (3) provide suggestions on the selection and use of these models based 

on the results in this study.  
 
  
• Project Narrative 
 
Maximum length of 20 double spaced pages or 20,000 characters. Include methods, results, 
conclusions, recommendations, outreach accomplishments and other pertinent information. Focus 
on the project activities and accomplishments in context of the overall project goals. 
 

1. Materials and methods 

1.1 Model description 

Table 1 provides descriptions of the models including STEPL-Purdue, SWAT, HIT, L-THIA, 

PLOAD, STEM-P, and Region 5. The detailed descriptions include model capabilities; model 

inputs to estimate hydrology, TN, TP, and sediment from the watershed without BMPs, and 

additional inputs to simulate BMPs; and methods to simulate hydrology, TN, TP, sediment, and 

BMPs. The section labeled “Optional inputs” in Table 1 identifies model inputs for which default 

values are used unless values are provided by users.  

 

1.2 Study area 

The AXL watershed, with a total area of 41.5 km
2
, is located in DeKalb County, Northeastern 

Indiana. The land uses of the AXL watershed in 2006 show that 12% of the watershed is forest, 
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64% is cropland, 17% is pasture land, 1% is water, and 6% is urban (Figure 1). The average 

slope of the watershed is 0.97%, and the average annual precipitation is 948 mm.  

 

1.3 Simulation scenarios in this study 

Watershed hydrologic/water quality models are typically used for watershed planning. For the 

purpose of accomplishing project goals with the lowest consumption of time and money, the user 

should select the correct model. Table 2 shows the simulation scenarios used to evaluate models 

in this study. STEPL-Purdue was applied in four ways, including typical use with observed 

rainfall data (STEPL-Purdue_1), modified use with observed rainfall data (STEPL-Purdue_2), 

typical use with CLIGEN rainfall data (STEPL-Purdue_3), and modified use with CLIGEN 

rainfall data (STEPL-Purdue_4) (for more details of typical and modified use, refer to 2.3.1 

STEPL-Purdue simulation). Uncalibrated, calibrated, and validated average annual results of 

STEPL-Purdue_1, STEPL-Purdue_2, SWAT, L-THIA, and STEM-P were estimated. 

Uncalibrated average annual results of STEPL-Purdue_3, STEPL-Purdue_4, HIT, and PLOAD 

were computed. The Region 5 model was not included in this part of the study because it does 

not provide pollutant load outputs for all land uses. For example, the model provides outputs 

from agricultural, feedlot, and urban land uses, but it does not report outputs from other land uses. 

Further, the model is a field level model, and does not estimate watershed scale results. Detailed 

descriptions of simulation scenarios are discussed in the following sections. 

 

The simulated results were compared with observed data. Observed data (2006 to 2013), 

including streamflow, TP concentration and TN concentration, were obtained from Agricultural 
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Research Service (ARS) Conservation Effects Assessment Project (CEAP) Water Quality 

Assessment Program. Observed runoff volume and baseflow volume were computed based on 

streamflow data using Baseflow Filter Program (BFLOW) (Arnold and Allen 1999). Missing TP 

and TN concentrations were filled using the LOAD ESTIMATOR (LOADEST) model (Runkel 

et al. 2004). Observed TP and TN concentrations were multiplied with flow to generate observed 

TP and TN loads for model calibration and validation.  

2. Results and discussion 

2.1 Uncalibrated results comparison 

Table 3 shows the uncalibrated average annual results (2006-2013) using various models, 

including four applications of STEPL-Purdue (STEPL-Purdue_1, STEPL-Purdue_2, STEPL-

Purdue_3, and STEPL-Purdue_4), SWAT, HIT, L-THIA, PLOAD, and STEM-P models. Table 

3 indicates that the four ways to apply uncalibrated STEPL-Purdue model resulted in 

underestimating average annual streamflow volume by 36%, 29%, 39%, and 32%, respectively. 

Uncalibrated STEPL-Purdue applications underestimated average annual runoff volume by 39%, 

49%, 42%, and 51%, respectively. Uncalibrated STEPL-Purdue applications underestimated 

baseflow volume by 34%, 14%, 37%, and 17%, respectively. The differences between observed 

and simulated flow were due to default CN values in the model that were not suitable for flow 

estimation in the AXL watershed. The differences between flow volumes estimated by typical 

and modified use of uncalibrated STEPL-Purdue model were obvious; this was due to typical use 

of STEPL-Purdue that only considered the study area as a single watershed with one soil group, 

while modified use of STEPL-Purdue model used all soil groups present and multiple 

subwatersheds. This demonstrated that to better represent the actual land uses and soil groups of 
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a watershed, users should specify all soil groups in the watershed using multiple subwatersheds 

instead of using a single watershed with one dominant soil group. For both typical and modified 

use of STEPL-Purdue model, the differences of estimated average annual results using observed 

rainfall data and CLIGEN rainfall data were small; this indicates that users may be able to use 

either observed or GLIGEN rainfall data as the weather inputs for STEPL-Purdue model to 

estimate average annual results.  

 

Uncalibrated STEPL-Purdue model applications underestimated TN load by 49%, 80%, 50%, 

and 81%, respectively. Uncalibrated typical use of STEPL-Purdue model with observed rainfall 

data and CLIGEN rainfall data overestimated average annual TP load by 153% and 150%, 

respectively. However, uncalibrated modified use of STEPL-Purdue model with observed 

rainfall data and CLIGEN rainfall data underestimated average annual TP load by 62% and 64%, 

respectively. The average annual sediment load estimated by typical use of uncalibrated STEPL-

Purdue was also much higher than that assessed by modified use of uncalibrated STEPL-Purdue. 

The higher estimated results of nutrients and sediment loads by typical use of STEPL-Purdue 

model compared to that of modified use of STEPL-Purdue were mainly due to different USLE 

parameters used when computing sediment loads. For typical use of STEPL-Purdue model, the 

default values of USLE parameters for DeKalb County, Indiana from the model were used, 

including 180 for rainfall erosivity factor R, 0.34 for soil erodibility factor K, 1.47 for 

topographic factors LS, 0.2 for cropland cropping factor C, 0.04 for pastureland factor C, 0.003 

for forest factor C, and 1.00 for conservation practice factor P. However, based on methods in 

the SWAT model and Foster et al. (1981), the values of USLE parameters used in the modified 

use of STEPL-Purdue model were changed to 140 for rainfall erosivity factor R, 0.30 for soil 
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erodibility factor K, 0.11 for topographic factors LS, 0.2 for cropland cropping factor C, 0.003 

for pastureland factor C, 0.001 for forest factor C, and 1.00 for conservation practice factor P. 

With the changed values of parameters in the USLE method, the modified use of STEPL-Purdue 

model resulted in significantly lower sediment loads compared to that of typical use of STEPL-

Purdue. As a result, nutrient loads delivered with sediment, as well as the total nutrient loads at 

the outlet of the watershed estimated by modified use of STEPL-Purdue model, were much 

lower. This indicates that users should be careful about using the default values in STEPL and 

may want to generate their own USLE parameters for their watersheds of interest.  

 

The uncalibrated SWAT model overestimated average annual streamflow, runoff, baseflow, TN, 

and TP by 58%, 109%, 19%, 21%, and 292%, respectively. This suggests the default values of 

parameters in SWAT to represent hydrological processes and nutrient cycles were not applicable 

for this watershed, and parameters needed to be calibrated. The simulation of different flows 

allows SWAT to consider the different pathways that will respond differently for different time 

scales, and quality of water from these different pathways will also be different. 

 

The sediment load estimated by the uncalibrated HIT model estimated from AXL watershed was 

0.34 ton/ha/yr, but due to lack of monitored sediment load data, the performance of HIT was not 

compared with observed data. The uncalibrated L-THIA model underestimated average annual 

runoff volume, TN load, and TP load by 35%, 86%, and 75%, respectively; this indicates that the 

default values of curve numbers, and TN/TP EMC values in L-THIA model were too small to 

correctly estimate runoff volume and nutrient loads in the AXL watershed. The uncalibrated 
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STEM-P model, which had good estimation of baseflow, overestimated average annual 

streamflow volume and runoff by 19% and 38%, while underestimating average annual TP load 

by 14%. This suggests the default parameters in STEM-P model may also need to be calibrated 

to better estimate hydrology and water quality in the AXL watershed. The uncalibrated PLOAD 

model, which underestimated TN and TP loads by 10% and 3%, respectively, had good 

performance in estimating TN and TP loads in the AXL watershed (less than 10% difference 

from observed data), indicating that the default Export Coefficient values of TN and TP in 

PLOAD model were suitable for the AXL watershed. It should be mentioned that PLOAD uses 

annual pollutant load coefficients from each land use to estimate total pollutant loads, and 

therefore, if PLOAD was calibrated, results for the calibration and validation periods would be 

the same. Further, the model does not include an automated approach for calibration. Although 

pollutant estimation of the PLOAD model performed well in the AXL watershed, it uses a simple 

method of pollutant assessment and does not consider surface runoff, baseflow, or tile flow, 

which may not be the best way to simulate pollutants losses, especially when trying to identify 

best approaches to reduce pollutant loads.  

 

Since STEPL-Purdue, SWAT, and HIT use similar methods (USLE, MUSLE, and RUSLE, 

respectively) to estimate soil erosion, the differences of average annual sediment load using 

modified use of STEPL-Purdue, SWAT, and HIT might be due to different methods to estimate 

sediment delivery ratio. STEPL-Purdue uses empirical sediment delivery ratio methods based on 

the size of drainage area without accounting for other characteristics of the watershed. In 

STEPL-Purdue, the larger the drainage area is, the smaller the sediment delivery ratio would be 

(Park 2014). The HIT model adopts a sediment delivery model (SEDMOD) based on surface 
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roughness, soil texture, and distance to stream (Fraser 1999). The SWAT model estimates 

sediment routing based on a simplified Bagnold equation and physics based approach for 

channel erosion (Neitsch et al. 2011). The average annual sediment load estimated by the L-

THIA model was much lower than results estimated by other models, which was due to the low 

sediment concentration from each land use (EMC values for TSS) in the model default inputs.  

 

The above results show that other than the PLOAD model (good prediction of TN and TP loads) 

and HIT model (not compared to observed results), other models need to be calibrated to better 

predict hydrology and water quality in the AXL watershed. This was likely because to simulate 

hydrology and water quality at watershed scales, the complex physical processes need 

parameters that vary spatially and temporally, and model parameters must be identified for each 

study area (Duan et al. 2003). Model calibration is usually used to assess model parameters by 

adjusting model parameters to match predicted results with observed data (Abbott et al. 1986). 

Although SWAT is a complex, semi-distributed, and physically based hydrologic/water quality 

model that is more complicated to use, similar to the simpler models explored, the average 

annual results were not acceptable without calibration in the AXL watershed. This demonstrates 

that more complex models do not always provide better results, especially when the model 

parameters are not calibrated using measured watershed response. 

 

Table 4 shows the performance of ensemble modeling. Ensemble means with 90% confidence 

intervals of uncalibrated STEPL-Purdue_2 (modified use with observed rainfall data), SWAT, L-

THIA, PLOAD, and STEM-P models were estimated. All 90% confidence intervals for 
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streamflow, runoff, baseflow, TN, and TP enveloped the corresponding measured data. The 

ensemble means overestimated streamflow, runoff, baseflow, and TP by 15.9%, 16.0%, 3.2% 

and 27.7%, respectively, while underestimating TN by 38.8%. Ensemble modeling performed 

better than STEPL-Purdue_2 and L-THIA in all estimations. Ensemble modeling had better 

performance than SWAT in all estimations except TN. Ensemble modeling had better results 

than STEM-P in all estimates except TP. Ensemble modeling did not perform as well as PLOAD 

in estimating TN and TP, due to the good performance of PLOAD in the AXL watershed. 

Overall, the ensemble modeling of uncalibrated models enhanced the hydrology and water 

quality predictions compared to most of the models alone. This approach could be used to 

increase the reliability of predictions when monitored data are not available. 

 

2.2 Calibrated results comparison 

Table 5 shows the calibrated results of two STEPL-Purdue applications (STEPL-Purdue_1 and 

STEPL-Purdue_2), SWAT, L-THIA, and STEM-P. STEPL-Purdue applications with observed 

rainfall data were calibrated for average annual runoff volume, baseflow volume, TN load, and 

TP load. Typical use of calibrated STEPL-Purdue with observed rainfall data resulted in good 

estimation of streamflow, runoff, baseflow, and TN. However, it overestimated TP load by 159%, 

which may due to the overly high TP coefficients in soil and associated with flow, and 

overestimation of sediment load. Modified use of calibrated STEPL-Purdue with observed 

rainfall data resulted in good estimation of streamflow, runoff, baseflow, and TP. However, it 

underestimated TN load by 16%. The modified use of the calibrated STEPL-Purdue model 

provided better estimation of streamflow, runoff, baseflow, and TP compared to that of typical 
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use. However, modified use of calibrated STEPL-Purdue generated poorer estimation of TN 

compared to that of typical use. Overall, the modified use of the calibrated STEPL-Purdue model 

performed better than the typical use of the calibrated STEPL-Purdue model in predicting water 

quantity and quality.  

 

The L-THIA model was calibrated for average annual runoff volume, TN load, and TP load. The 

calibrated L-THIA model resulted in good assessment of average annual runoff volume, TN load, 

and TP load. The nearly perfect performance of calibrated L-THIA model in estimating average 

annual results was mainly due to the way the L-THIA model was calibrated. The L-THIA model 

was calibrated for runoff first with an increase of all curve numbers by a percentage 

simultaneously. Then, EMCs from all land uses were changed by a certain percentage to match 

observed average annual TN and TP loads for the calibration period.  

 

Monthly calibrations of SWAT (e.g. Spruill et al. 2000; White and Chaubey 2005) and STEM-P 

(Li et al. 2016b) are in line with standard modeling practices for these models, because the 

models were developed for simulating daily or monthly results, as well as annual results for long 

time periods. In many cases, the timing and pathways of pollutant losses are quite variable, 

therefore requiring daily or monthly results to facilitate understanding of the system and 

identification of the most appropriate mitigation practices. For example, P loss varies greatly 

daily and seasonally in the study watershed, and thus daily and monthly predictions are needed to 

accurately predict timing of P losses and identify strategies for its control.  
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Usually, model performance deteriorates from average annual to annual to monthly to daily 

calibration due to calibration for smaller simulation time steps needing to match more complex 

observed data, which is more difficult to achieve, and thus decreasing the performance of the 

model when using the same quantitative statistics (Coffey et al. 2004; Moriasi et al. 2007). Thus, 

average annual predictions for a model calibrated at a monthly or daily scale will typically 

perform at least as good as the performance of the model at the monthly scale or daily scale 

calibration. SWAT was thus calibrated for monthly results to reflect its typical application, and 

STEM-P was also calibrated on a monthly scale to make the results comparable. 

 

In the SWAT model, monthly streamflow volume (KGE = 0.88, R
2
 = 0.96, NSE = 0.95), TN 

load (KGE = 0.83, R
2
 = 0.81, NSE = 0.77), and TP load (KGE = 0.91, R

2
 = 0.97, NSE = 0.97) 

were calibrated. The calibrated SWAT model performed well in estimating average annual 

streamflow. However, the calibrated SWAT model overestimated average annual runoff volume, 

TN and TP loads by 18%, 13%, and 50%, respectively, and it underestimated baseflow by 14%. 

The main reason SWAT did not perform well in estimating average annual flow and TN load 

was that SWAT was calibrated for monthly results instead of average annual results.  

 

The STEM-P model was calibrated for monthly streamflow volume (R
2
 = 0.70, NSE = 0.53, 

PBIAS = 3.4%) and TP load (with R
2
 = 0.68, NSE = 0.65, PBIAS = 15.4%). The calibrated 

STEM-P model provided good estimates of streamflow and baseflow, overestimating average 

annual runoff and TP by 18% and 15%. STEM-P was developed to simulate the main processes 

governing hydrology and phosphorus transport with simple equations and few parameters. 



13 
 

STEM-P did not perform as well as models calibrated for average annual results for the reason 

that STEM-P was calibrated for monthly results.  

 

Calibrated STEPL-Purdue and L-THIA performed better than calibrated SWAT and STEM-P in 

estimating average annual water quantity and water quality. This was likely because STEPL-

Purdue and L-THIA were calibrated for average annual results, while SWAT and STEM-P were 

calibrated for monthly results. As noted above, monthly calibrations of SWAT and STEM-P are 

in line with standard modeling practices for these models. In many cases, monthly results are 

required to understand system and identify the best mitigation method due to variation of timing 

and paths of pollutant losses.  

 

2.3 Validation results comparison 

Table 6 shows the validation results of two STEPL-Purdue applications (STEPL-Purdue_1 and 

STEPL-Purdue_2), SWAT, L-THIA, and STEM-P. Parameters of calibrated models were used 

for model validation. STEPL-Purdue applications with observed rainfall data were validated for 

average annual runoff volume, baseflow volume, TN load, and TP load. Validation of typical use 

of STEPL-Purdue with observed rainfall data resulted in good estimation of average annual 

streamflow volume and TN load. However, it overestimated average annual baseflow volume 

and TP load by 12% and 102%, respectively, and it underestimated average annual runoff 

volume by 16%. Validation of modified use of STEPL-Purdue with observed rainfall data 

resulted in good prediction of average annual streamflow volume, runoff volume, baseflow 

volume, and TN load. However, it underestimated average annual TP load by 25%. The modified 
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use of STEPL-Purdue model showed better validated results in estimating average annual runoff 

volume, baseflow volume, and TP load compared to that of typical use. However, modified use 

of STEPL-Purdue generated slightly poorer validated estimates of average annual streamflow 

volume and TN load. Overall, modified use of STEPL-Purdue performed better than typical use 

of STEPL-Purdue, indicating that users should provide more detailed land use and soil group 

information for the watershed and generate their own USLE parameters for the watershed. The 

performance of calibrated and validated STEPL-Purdue model in estimating average annual TN 

and TP loads was not always good. This might due to the model not being capable of accurately 

simulating crop management practices such as tillage operations, fertilizer and herbicide 

applications, crop rotation, planting time, and harvesting time. 

 

The SWAT model was validated for monthly streamflow volume (KGE = 0.87, R
2
 = 0.92, NSE 

= 0.91), TN load (KGE = 0.51, R
2
 = 0.81, NSE = 0.49), and TP load (KGE = 0.91, R

2
 = 0.97, 

NSE = 0.93). Validation of the SWAT model showed good estimation (less than 10% difference 

compared to observed data) of average annual streamflow volume, baseflow, TN load and TP 

load, and overestimation of runoff by 14%. Compared to the calibrated performance of the 

SWAT model, validation results for the model showed similar performance in estimating 

average annual streamflow, while better performance in assessing average annual runoff, 

baseflow, TN and TP.  

 

The L-THIA model was validated for average annual runoff volume, TN load, and TP load. 

Validation of the L-THIA model indicated under prediction of average annual runoff volume, 
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TN load, and TP load by 15%, 21%, and 47%, respectively. The validation performance of the 

L-THIA model was poorer than the calibration performance of L-THIA in estimating average 

annual runoff volume, TN load, and TP load. L-THIA may not be the best choice for estimating 

TN and TP loads in watersheds with mainly agricultural areas because the model does not 

consider physical processes of nutrients delivered by sediments, crop management and 

agricultural animals. 

 

The STEM-P model was validated for monthly streamflow volume (R
2
 = 0.77, NSE = 0.76, 

PBIAS = -10.5%) and TP load (with R
2
 = 0.63, NSE = 0.50, PBIAS = -26.3%). The validation of 

STEM-P resulted in good estimation of runoff volume, and underestimation of average annual 

streamflow volume, baseflow volume, and TP load by 10%, 21%, and 26 %, respectively. 

Similar to the calibration results, the simulated TP of STEM-P was dependent on streamflow, 

and the error in streamflow was magnified in TP simulation. Overall, the accuracy of STEM-P 

was fair.  

 

Validation of the SWAT model and modified use of STEPL-Purdue model generally showed 

better performance in estimating average annual water quantity and quality in the AXL 

watershed compared to that of typical use of STEPL-Purdue, L-THIA, and STEM-P. This 

indicates that the parameters for SWAT and modified use of STEPL-Purdue obtained for the 

calibration period were also suitable for the validation period. Due to the complexity of 

calibrating SWAT, the time, effort, and data required to obtain these improved results were much 

greater than in calibrating STEPL-Purdue model. 
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3. Conclusions 

Various hydrologic and water quality models (including STEPL-Purdue, SWAT, HIT, L-THIA, 

PLOAD, STEM-P, Region 5, and results of ensemble modeling), with varying data requirements, 

simulation methods, and complexity levels, were compared in this study. The details of models 

were described, including model capabilities; model inputs to estimate hydrology, TN, TP, and 

sediment from the watershed without BMPs; additional inputs to simulate BMPs; and methods to 

simulate hydrology, TN, TP, sediment, and BMPs. Uncalibrated, calibrated, and validated results 

of the models in estimating average annual water quantity and quality for a 41.5 km
2 

agricultural 

watershed in Northeastern Indiana were explored.  

 

The uncalibrated PLOAD model had good performance in estimating TN and TP loads in the 

AXL watershed; however, the PLOAD model should be used with caution in other watersheds 

due to the possible need to update the Export Coefficient table based on local conditions. The 

ensemble modeling with uncalibrated models enhanced the hydrology and water quality 

predictions compared to most of the models alone. This approach could be used to increase the 

reliability of predictions when no monitored data are available.  

 

STEPL-Purdue, SWAT, L-THIA, and STEM-P were calibrated to explore performance of 

predicting hydrology and water quality after calibration in the AXL watershed. Then, the 

parameters of calibrated models were used in model validation. Overall, the modified use 

(detailed watershed level land use and soil group information and modified USLE parameters) of 
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the STEPL-Purdue model (both calibrated and validated) performed better than the typical use 

(one subwatershed with land use information and single soil group, and default USLE parameters) 

of calibrated STEPL-Purdue model in predicting water quantity and quality. This indicates that 

users should provide more detailed watershed level land use and soil group information, and 

USLE parameters for the study watershed should be generated instead of using default values. 

Either observed or GLIGEN rainfall data could be used as the weather inputs for STEPL-Purdue 

model to estimate average annual results. The L-THIA model may not be the best choice for 

estimating TN and TP loads in watersheds with mainly agricultural areas, because the model 

does not consider processes associated with crop management, agricultural animals, and 

nutrients delivered by sediment in the study watershed. Compared to the performance of the 

calibrated SWAT model, validation results of SWAT provided similar performance in estimating 

average annual streamflow, while much better performance in assessing average annual runoff, 

baseflow, TN load and TP load. The calibrated STEM-P model resulted in overestimation of 

average annual runoff and TP, and good estimation of streamflow and baseflow. The validation 

of STEM-P model resulted in underestimation of average annual streamflow volume, baseflow 

volume and TP load, and good estimation of runoff volume.  

 

Compared to other models in this study, the SWAT model comprehensively simulates watershed 

processes; at the same time, it is the most time consuming and difficult to apply model. STEPL-

Purdue, HIT, L-THIA, PLOAD, and STEM-P are simpler models that need minimum input data 

and are less time consuming and easier to set up. However, simple models may misrepresent 

watershed processes and provide inaccurate results. Models need to be selected carefully based 
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on the simulation purposes, data availability, model characteristics, time limits, and project 

budgets. 

 

For future studies, the Region 5 model needs to be tested in an area with observed field level data. 

The performance of the HIT model needs to be further explored in future studies in watersheds 

with observed sediment data. The comparison of model performance in estimating impacts of 

BMPs could also be explored in the future.  
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Table 1. Description of capabilities, inputs and simulation methods of models 

 STEPL-Purdue SWAT HIT 

Model 

capabilities 

Estimates average annual runoff, baseflow, streamflow, TN, 

TP, BOD, sediment. BMP simulations and identification of 

the most cost-effective BMP implementation plans.  

Estimates daily, monthly, and yearly 

results of water, sediment, and 

agricultural pollutant yields (TN, NO3, 

organic N, NH4, NO2, TP, soluble P, 

organic P, mineral P, PO4, BOD, algal 

biomass, dissolved oxygen, pesticide, 

bacteria, metal, and fecal coliform). 

Simulation of BMPs. 

For agricultural areas only. 

Estimates average annual erosion 

and sediment load, average annual 

rates of erosion and sediment 

loading, total reductions and 

percent reductions of average 

annual erosion and sediment load 

due to BMPs, BMP cost and BMP 

cost per erosion/sediment load 

reduced. 

Model inputs to 

estimate 

hydrology, TN, 

TP, and sediment 

from the 

watershed 

without BMPs. 

Mandatory inputs:  

Land use, daily precipitation data, Universal Soil Loss 

Equation (USLE) parameters, gully and streambank 

erosion parameters, and percent of pavement in feedlots,   

Optional inputs: 

Agricultural animals, number of months that manure is 

applied, septic system and illegal direct wastewater 

discharge data, Hydrologic Soil Groups (HSGs), runoff 

curve number, nutrient concentrations in runoff and 

shallow groundwater, soil nutrient concentrations, urban 

land use distribution, cropland irrigation, soil infiltration 

fraction for precipitation, wildlife density in cropland, 

standard animal weight, septic system nutrients, feedlot 

nutrients, dry density, correction factor for soil, lateral 

recession rate.  

Mandatory inputs:  

Digital elevation model (DEM) data, 

soil data, land use data, hydrographic 

data, daily precipitation, maximum 

and minimum daily temperature, solar 

radiation, wind speed, relative 

humidity, crop management (tillage 

operations, fertilizer and herbicide 

applications, crop rotation, time of 

planting and harvesting).  

Mandatory inputs: 

Selection of watershed results in 

automatically generating inputs, 

including surface roughness, soil 

texture, distance to stream, soil 

erodibility, rainfall intensity, slope 

length, slope steepness, and land 

cover management.  

Additional inputs 

to simulate BMPs 

Mandatory inputs:  

BMP type, percent of area with BMP applied, pollutant 

type, interest rate, required pollutant reduction. 

Optional inputs:  

Pollutant removal efficiency, practice establishment cost, 

annual maintenance cost, BMP life. 

Complex input data for planting, 

harvest, irrigation applications, 

nutrient applications, pesticide 

applications, tile drains, tillage 

operations, and urban areas. 

Mandatory inputs: 

BMP type 

 

Optional inputs: 

BMP costs per acre 
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Hydrology 

Runoff volume: Soil Conservation Service (SCS) curve 

number (CN) method. 

 

Baseflow volume: soil infiltration fraction as part of 

precipitation. 

 

Streamflow volume: sum of runoff and baseflow. 

Runoff volume: SCS-CN method or 

Green and Ampt infiltration method. 

 

Baseflow volume: empirical 

relationships. 

 

Lateral subsurface flow: kinematic 

storage model.  

 

Tile flow: Hooghoudt and Kirkham 

tile drain equations 

 

Streamflow volume: sum of surface 

runoff, baseflow, and lateral 

subsurface flow.  

 

N/A 

Total Nitrogen 

From runoff of each land use (runoff volume × 

concentration), feedlots (based on animal types, weight, 

and average rainfall), failing septic systems and illegal 

direct discharges (based on number of septic systems, 

failure rates, the ratio of persons per septic system, and 

calculated direct wastewater discharge), groundwater 

(groundwater × concentration), sediment (sediment load × 

concentration × nutrient enrichment).   

 

Nitrogen cycle is modeled. Estimates 

total nitrogen in runoff, lateral 

subsurface flow, percolation, top soil, 

tile flow, sediment. Considers plant 

uptake of nitrogen.  
N/A 

Total 

Phosphorous 

Phosphorus cycle is modeled. 

Estimates total phosphorus in top soil, 

runoff, tile flow, and sediment. 

Considers plant uptake of 

phosphorous.  

Sediment 

Universal Soil Loss Equation (USLE), gully erosion (based 

on volume loss, soil dry density, years to form, correction 

factor), and streambank erosion (based on length, height, 

lateral recession rate, soil dry density, correction factor), 

sediment delivery ratio (based on size of drainage area). 

Overland sediment estimated by 

Modified Universal Soil Loss 

Equation (MUSLE), snow cover 

effects, sediment lag in surface runoff.  

Sediment associated with groundwater 

and lateral flow based on sediment 

concentration. Sediment routing based 

on simplified Bagnold equation, 

physics based approach for channel 

erosion.  

Uses RUSLE to estimate soil 

erosion. Uses Spatially Explicit 

Delivery Model (SEDMOD) to 

estimate delivery ratio based on 

flow path slope gradient, flow path 

slope shape, flow path hydraulic 

roughness, stream proximity, soil 

texture, and overland flow.  

Representation of 

BMPs and BMP 

Cost Estimation 

Estimate water quality impacts: pollutant removal 

efficiency. Estimate cost based on interest rate, 

establishment cost, annual maintenance cost, and BMP life.  

Change parameters in SWAT model to 

represent BMPs. Cost estimates not 

included in model. 

Change land cover management 

factor and support practice factor in 

RUSLE. BMP costs per acre (based 

on Environmental Quality 
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Incentives Program payments). 

Key References 
Tetra Tech (2011); Park (2014); Park et al. (2014); STEPL-

PURDUE (https://engineering.purdue.edu/~ldc/STEPL/) 
Neitsch et al. (2011) 

Renard et al. (1996); Fraser (1999); 

Ouyang et al. (2005);  

http://www.iwr.msu.edu/hit2/ 

 L-THIA Region 5 PLOAD STEM-P 

Model capabilities 

Estimates annual runoff, TN, TP, 

BOD, TSS, TDS, DP, TKN, NOx, Cd, 

Cr, Cu, Pb, Ni, Zn, FC, FS, E. coli, 

COD, and O&G. Simulation of BMPs 

and LID practices.  

Gully stabilization, Bank 

Stabilization, Agricultural Fields: 

estimates average annual reductions 

of sediment, phosphorus, and nitrogen 

load due to BMPs.  

 

Feedlots: estimates average annual 

BOD, TN, TP loads before and after 

BMPs. 

 

Urban: estimates average annual 

BOD, COD, TSS, Pb, Cu, Zn, TDS, 

TN, TKN, DP TP, Cd loads before 

and after BMPs. 

Estimates average 

annual pathogens, 

BOD, COD, TSS, 

TDS, TN, TP, 

NOx, NO3, TKN, 

NH4, ORGN, PO4, 

Zn, Cu, Pb, Cd, 

Cr, Ni, and Hg. 

Simulation of 

BMPs.  

Estimates daily, monthly, and 

yearly results of surface runoff, 

base flow, tile flow, stream flow, 

TP 

Model inputs to 

estimate hydrology, 

TN, TP, and 

sediment from the 

watershed without 

BMPs. 

Mandatory inputs:  

Daily precipitation, HSGs, and land 

use types.  
Optional inputs: 

Curve numbers, pollutant 

concentrations from each land use.  

Mandatory inputs:  

Gully Stabilization: soil textural class, 

top width, bottom width, depth, 

length, years to form, soil weight.  

 

Bank Stabilization: soil textural class, 

length, height, lateral recession rate, 

soil weight.  

 

Agricultural Fields: State, County, 

contributing area, soil texture.  

 

Feedlots: contributing area, percent 

area paved, State, County, nearest 

weather station, animal numbers.  

 

Urban: sewered and unsewered urban 

land use areas. 

 

Optional inputs: 

Mandatory 

inputs:  

Export coefficient 

method: Subbasins 

layer, land use 

type.  

 

Simple (EMC) 

method: Subbasins 

layer, land use 

type, annual 

precipitation.  

 

Optional inputs:  

Export coefficient 

method: Export 

coefficients, point 

sources, bank 

erosion. 

 

Mandatory inputs:  

Daily precipitation, temperature, 

land cover map, DEM, soil map 

and properties, map of water 

courses. 

 

Tile drain properties if tiles 

present. 

 

Zero-order mobilization rate and 

first-order retention rate for each 

land cover. 
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Gully Stabilization, Bank 

Stabilization: soil TP, TN 

concentrations.  

 

Agricultural Fields: USLE factors.  

 

Feedlots, Urban: N/A 

Simple (EMC) 

method: event 

mean 

concentrations 

(EMC), 

imperviousness, 

point sources, 

bank erosion. 

Additional inputs 

to simulate BMPs 

Mandatory inputs:  

GIS data included lakes, street 

centerlines, streams, imperviousness, 

digital elevation model (DEM) data. 

 
Optional inputs: curve numbers, 

percent runoff volume reduction, 

percent pollutant concentration 

reduction, irreducible concentration, 

interests rates, BMP life, construction 

cost, maintenance cost. 

Mandatory inputs:  

Gully Stabilization, Bank 

Stabilization: BMP efficiency. 

 

Agricultural Fields: cover 

management factor, support practice 

factor. 

 

Feed lots, urban: BMP type.  

Mandatory 

inputs:  

Pollutant removal 

efficiency, BMP 

layer, subbasin ID 

field. 

N/A 

Hydrology Runoff volume: SCS-CN method. N/A N/A 

Distributed Hydrological Model 

for Watershed Management 

(DHM-WM). Surface runoff: 

Mishra and Singh modified 

long-term NRCS CN method 

incorporated with TOPMODEL 

concept. 

Base flow: Mishra and Singh 

modified long-term NRCS CN 

method. 

Tile flow: Empirical equation 

similar to the routine of SWAT 

Total Nitrogen 

Pollutant concentration × runoff 

volume from each land use 

 

Gully Stabilization, Bank 

Stabilization, Agricultural Fields: 

based on sediment loads, nutrient 

concentration in sediment, and 

correction factor.  

 

Feedlots: based on animal types, 

weight, and average rainfall. 

 

Export Coefficient 

Method: based on 

pollutant 
loading rate for 
each land use 
type and area of 
each land use 
type. 

N/A 

Total Phosphorous 

Empirical equations based on 

zero-order mobilization and 

first-order retention  
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Urban: average pollutant loading rates 

by land use types, land use area. 

 

Simple (EMC) 

Method: based on 

percent 

imperviousness, 

annual 

precipitation, ratio 

of storms 

producing runoff, 

runoff coefficient, 

EMC, area of land 

use.  
Sediment 

Gully Stabilization: Gully Erosion 

Equation based on volume loss, soil 

dry density, years to form.  

 

Bank Stabilization:  

Channel Erosion Equation based on 

length, height, lateral recession rate, 

soil dry density.  

 

Agricultural Fields: 

USLE, sediment delivery Ratio 

(based on size of drainage area) 

 

Feedlots: N/A 

 

Urban: average pollutant loading rates 

by land use types, land use area. 

N/A 

Representation of 

BMPs and BMP 

Cost Estimation 

L-THIA-LID 2.1 version. Estimate 

runoff and water quality: curve 

numbers, percent runoff volume 

reduction, percent pollutant 

concentration reduction, irreducible 

concentration, pollutant concentrations 

from each land use. Estimate cost: 

construction, maintenance, and 

opportunity costs. 

Estimate water quality impacts: 

pollutant removal efficiency. Cost 

estimates not included in model. 

Estimate water 

quality impacts: 

pollutant removal 

efficiency. Cost 

estimates not 

included in model. 

N/A 

Key References 

Harbor (1994); Engel et al. (2003); 

Ahiablame et al. (2012); Liu et al. 

(2015a and 2015b). 

MDEQ (1999) USEPA (2001) Li et al. (2016a and 2016b). 
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Table 2. Simulation scenarios to evaluate models (Y—Yes, N—No) 

 
STEPL- 

Purdue 

_1 

STEPL- 

Purdue 

_2 

STEPL- 

Purdue 

_3 

STEPL- 

Purdue 

_4 

SWAT HIT 
L-

THIA 
PLOAD 

STEM-

P 

Streamflow Y Y Y Y Y N N N Y 

Runoff Y Y Y Y Y N Y N Y 

Baseflow Y Y Y Y Y N N N Y 

TN Y Y Y Y Y N Y Y N 

TP Y Y Y Y Y N Y Y Y 

Sediment Y Y Y Y Y Y Y Y N 

Uncalibrated 

results 
Y Y Y Y Y Y Y Y Y 

Calibrated 

results 
Y Y N N Y N Y N Y 

Validated 

results 
Y Y N N Y N Y N Y 
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Table 3. Uncalibrated results of models in simulating average annual flow, nutrients, and sediment (2006-2013) 

  Monitored  

STEPL- 

Purdue_ 1 

STEPL- 

Purdue_2 

STEPL- 

Purdue_3 

STEPL- 

Purdue_4 

SWAT HIT L-THIA PLOAD STEM-P 

Streamflow (m
3
/ha/yr) 3469 2209 2465 2106 2368 5469 N/A N/A N/A 4130 

Runoff (m
3
/ha/yr) 1492 911 761 868 728 3117 N/A 977 N/A 2065 

Baseflow (m
3
/ha/yr) 1977 1298 1703 1237 1640 2352 N/A N/A N/A 2065 

TN (kg/ha/yr) 20.60 10.52 4.06 10.28 3.91 24.90 N/A 2.88 18.61 N/A 

TP (kg/ha/yr) 1.20 3.05 0.45 3.00 0.44 4.72 N/A 0.30 1.16 1.03 

Sediment (ton/ha/yr) N/A 4.37 0.22 4.33 0.22 3.45 0.34 0.03 2.32 N/A 

 

Table 4. Ensemble modeling performance  

 

Observed 

90% Confidence Interval Ensemble 

mean 

% difference between   

ensemble mean and observed Lower bound Upper Bound 

Streamflow (m3
/ha/yr) 3469 1484 6558 4021 15.9 

Runoff (m3
/ha/yr) 1492 451 3009 1730 16.0 

Baseflow (m3
/ha/yr) 1977 1492 2588 2040 3.2 

TN (kg/ha/yr) 20.60 0 25.41 12.61 -38.8 

TP (kg/ha/yr) 1.20 0 3.27 1.53 27.7 
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Table 5. Calibrated results of models in simulating average annual flow, nutrients, and 

sediment 

 

Monitored  STEPL-Purdue_1 STEPL-Purdue_2 SWAT L-THIA STEM-P 

Streamflow 

(m
3
/ha/yr) 

3799 3779 3799 3789 N/A 3929 

Runoff 

(m
3
/ha/yr) 

1633 1634 1633 1932 1648 1925 

Baseflow 

(m
3
/ha/yr) 

2165 2145 2165 1857 N/A 2004 

TN (kg/ha/yr) 21.98 22.02 18.41 24.90 21.98 N/A 

TP (kg/ha/yr) 1.04 2.70 1.01 1.56 1.01 1.20 

Sediment 

(ton/ha/yr) 
N/A 4.32 0.21 2.27 0.05 N/A 

 

Table 6. Validation results of models in simulating average annual flow, nutrients, and 

sediment 

  Monitored  

STEPL- 

Purdue_1 

STEPL- 

Purdue_2 

SWAT L-THIA STEM-P 

Streamflow (m
3
/ha/yr) 3140 3142 3151 3199 N/A 2811 

Runoff (m
3
/ha/yr) 1350 1129 1238 1535 1144 1406 

Baseflow (m
3
/ha/yr) 1790 2013 1913 1663 N/A 1406 

TN (kg/ha/yr) 19.23 19.05 18.08 21.00 15.25 N/A 

TP (kg/ha/yr) 1.33 2.69 1.00 1.34 0.70 0.98 

Sediment (ton/ha/yr) N/A 4.32 0.21 2.39 0.03 N/A 
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Figure 1. Location and land uses of AXL watershed in northeast, Indiana. 

 
  
• Potential Applications, Benefits and Impacts 
 
Include ways this project has affected industry development and productivity, resource 
management (e.g., acres of land restored, tools for use by managers created), behavior of target 
group of end users, and/or scientific advancement. Quantify these effects whenever possible. 
Include what you see as potential future applications of this project to these areas, considering 
both short (2-5 year) and long (>10 year) outcomes. 
 
 

For short-term outcomes, the results of this project can help users select appropriate models to 

use for various situations. The models examined include Spreadsheet Tool for the Estimation 

of Pollutant Load (STEPL)-Purdue, Soil and Water Assessment Tool (SWAT), High Impact 

Targeting (HIT) (Ouyang et al. 2005), Long-Term Hydrologic Impact Assessment (L-THIA), 

Pollutant Load (PLOAD), Spatially and Temporally Distributed Model for Phosphorus 

Management (STEM-P) (Li et al. 2016a, b), and Region 5 (MDEQ 1999). Most of these 

models are widely used by watershed groups and states in the Midwest US and also are of 
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interest to the Great Lakes Restoration Initiative. U.S. Environmental Protection Agency 

recommends using most of these models for evaluating water quantity/quality, total maximum 

daily loads (TMDLs), and/or effects of various conservation practices. For long-term outcomes, 

the results of the project demonstrate the significance of ensemble modeling, which can be a 

direction for future hydrologic/water quality model development.  

  
• International Implications If applicable to your report. 

 

The outcomes of the projects have international implications that are similar to the above 

potential applications, benefits and impacts. These implications include helping users select an 

appropriate model to use for various situations, and providing direction for future 

hydrologic/water quality model development.  

 
Section C. Outputs 

 
• Media Coverage  
Include radio, TV, newspaper, and magazine coverage by universities, local interest groups, news 
outlets, etc. Please include URLs and/or send hardcopies of stories if possible. 
 

N/A 
  
• Publications  
Include journal publications (submit full reference and copy of publication, where possible  
– we will respect all copyright laws), reports, papers presented at conferences, poster 
presentations specifically resulting from Sea Grant-funded research. Please submit a reprint of all 
publications to IISG as they become available. IISG support should be acknowledged in all 
resulting publications and presentations. 
 

Comparison of computer models for estimating hydrology and water quality in an agricultural 

watershed. July 17-20, 2016, Orlando, Florida. 2016 American Society of Agricultural and 

Biological Engineers Annual International Meeting. 

 

Liu, Y., Li, S., Wallace, C.W., Chaubey, I., Flanagan, D.C., Theller, L.O. and Engel, B.A., 

2016. Comparison of computer models for estimating hydrology and water quality in an 

agricultural watershed. Water Resources Management. In review. 

  
• Undergraduate/Graduate Names and Degrees  
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Include names of all undergraduate and graduate students supported by this grant and the degree 
pursued or earned. Theses or dissertations should be clearly identified as such, with author, title, 
degree, campus, date, and URL (if applicable). 
 

N/A 
  
• Project Partnerships  
Include related projects with other institutions or individuals initiated or continued due to this Sea 
Grant-sponsored research. 
 

N/A 
  
• Related Projects  
Include grants from other funding agencies that resulted, at least in part, from this SeaGrant 
sponsored research. Please include the title of the project, funding agency, amount of new 
funding, and funding decision (if known) and/or years of award. This piece is often necessary for 
Discovery Grants. 
 

N/A 
  
• Awards and Honors  
List all awards and honors received within the time period covered by this annual report. 
 

N/A 
 

  
• Patents/Licenses  
List any patents or patent licenses that have resulted from this project. 
 
N/A 

 
Graphs, figures and/or photos should be embedded in your text. Please recognize that we may wish to 
include these items in IISG publications with the appropriate credits. Similarly, we will post final reports 
on the IISG website within 2 months of receipt UNLESS PIs REQUEST THAT REPORTS  
BE HELD BACK PENDING PUBLICATION. 

 
PLEASE NOTE: Final project invoices will NOT be paid until a final report has been received and 
approved by IISG. 
 


