
In large lakes, shallow nearshore waters warm 
more rapidly than deeper o�shore waters.

Proximity to Shore A�ects Temperature

WARM WATER COLD WATER
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The density of water changes rapidly 
with small changes in temperature.

As air temperatures increase in early summer, the 
thermal bar extends o�shore. Ultimately, the system 
then transitions to vertical stratification across the 
entire lake.

SU M M ER TH ERMAL CON DITIONS

The timing of thermal bar formation and subsequent 
summer vertical stratification is directly influenced by 
climatic conditions, including preceding winter and 

spring temperatures and wind-driven mixing. 

Di�erences in the thermal density of nearshore 
and o�shore water result in horizontal stratification 
(i.e., separation), a common feature of large lakes 
characterized by the spring coastal thermal bar.
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Water currents in large lakes are almost 
entirely wind-driven but can also change 
based on seasonal trends in thermal 
density stratification.

The spinning of the earth and friction 
from wind a�ects the direction of water

There is uncertainty about the potential impacts of 
climate change on seasonal trends in wind direction and 

magnitude. However, altered wind patterns, coupled 
with warmer temperatures, could a�ect water circulation 

and patterns of upwelling and downwelling.
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Due to Coriolis force, wind-induced 
friction in the northern hemisphere 
directs water currents 90° to the 
right of prevailing winds (and to the 
left in the southern hemisphere). 

Consistently strong patterns in 
wind can induce relatively 
short-lived coastal upwelling and 
downwelling events which disrupt 
vertical stratification.

Summer stratification hinders 
vertical mixing of the water column 
but promotes water currents moving 
between nearshore and o�shore.

The formation of the spring thermal 
bar limits water currents moving 
nearshore to o�shore, instead 
facilitating predominantly 
alongshore currents and retention 
of material nearshore.
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Great Lakes Annual  Maximum Ice Coverage 1973-2020

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Si
m

ul
at

ed
 P

er
ce

nt
 B

as
e 

Co
ve

r

LONG-TERM AVG.
53.3%

Without winter ice, wind-driven 
mixing of the water column 
destabilizes lake physical, 
chemical, and biological 
processes, increasing winter light 
penetration, water temperatures, 
and nutrient availability.

3 Biological Changes

These changes in winter 
physical, chemical, and 
biological processes 
potentially result in greater 
winter phytoplankton 
production and lower 
spring production.

2 Physical Changes

Decreasing ice cover 
potentially results in 
high winter evaporation, 
owing to the prolonged 
exposure of relatively 
warm water to cold 
winter winds.

1 Evaporation
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Declining Ice Cover in Lake Michigan
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The extent and duration of ice cover varies 
year-to-year but has declined in recent decades.  

Future ice cover in large lakes is expected to continue 
to decrease, owing to increased warming.  

Source: NOAA GLERL

Source: Xue et al. 2022
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Increased climatic variability may result in more 
frequent mismatches between larval emergence and 

favorable water currents and environmental 
conditions, leading to consistently poor recruitment.

Abundance of  Juvenile Alewife

Relative Abundance of  Age 3 Alewife
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 Growth and Survival

Annual climate-driven variability of water 
currents and the timing of larval emergence 
a�ect thermal exposure and prey availability, 
influencing growth and survival. Synchronized 
larval emergence with favorable conditions 
likely facilitate strong recruitment.

Larval fish emerge from eggs at 
small sizes with underdeveloped 
swimming abilities that leave them 
largely at the mercy of lake 
water currents.

 Larval Emergence  Water Current Transport

Water currents may transport larval 
fish to favorable temperatures and 
concentrations of prey, or may 
transport larvae to unfavorable 
conditions and unfavorable 
concentrations of prey.

While many species of fish 
are capable of producing 
large numbers of o�spring, 
fish populations often display 
high year-to-year variability 
in the number of o�spring 
that grow and survive past 
early life (recruitment). 

Alewife Are Moved by
Water Currents
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Source: Hondorp et al. 2024
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Simulating the historic and potential future physical 
and biological processes  of Lake Michigan, we 
evaluated how past and future water currents, thermal 
conditions, and zooplankton prey have generated, and 
may lead to variable recruitment in two important Lake 
Michigan fish species, alewife (Alosa pseudoharengus) 
and yellow perch (Perca flavescens).  
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Understanding Larval 
Recruitment in Large Lakes Pt.2

Climate Change and
Large Lake Environments ▶

Simulations indicated that historically favorable sites 
(i.e., those where larvae displayed high growth 
and survival) may shift northward with 
increasing temperatures. 

Future years were characterized by declines in 
zooplankton that may result in more frequent 
mismatches between the emergence of 
larval fish and zooplankton prey.

DISPERSION MODEL

Energy 
Intake

Metabolic 
Loss Growth

LARVAL GROWTH AND SURVIVAL

Simulated trends in historic recruitment strength 
(strong vs. weak years) followed observed 
recruitment patterns.

Larval transport patterns were 
strongly influenced by thermal 

conditions, with the probability of 
larvae being transported o�shore 

increasing seasonally and 
occurring earlier in warm years. 

Larval fish are moved by
water currents and dispersed

The availability of zooplankton and location of larval fish
a�ect growth and survivability.
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