Bioaccumulation assessment of PFAS from contaminated sediments

Major Goals and Objectives

The widespread utilization of per- and polyfluoroalkyl substances (PFAS) has resulted in their appearance in soil, air, water, and biological tissues across the planet. One potential route of PFAS bioaccumulation into people is via consumption of contaminated fish. Previous research has demonstrated that low-level bioaccumulation of pollutants from contaminated sediments into benthic invertebrates is a key route of exposure into the food chain affecting human health. Contaminated sites are often located in areas populated by disadvantaged communities, and therefore consumption of fish by populations in areas of historic pollution is an important environmental justice consideration. PFAS accumulation in commercial fisheries is also an important consideration for the seafood industry and its workforce. This project will improve knowledge of bioaccumulation and other fate and transport processes in saturated media and develop new insight into public perceptions of risks of PFAS exposure through this pathway. The objectives are to: (1) understand the fate and transport processes, including competitive sorption, of complex PFAS mixtures from shallow groundwater to organisms in surface sediments, (2) identify key PFAS that are likely to drive bioaccumulation risk assessments for benthic invertebrates, (3) assess the potential for a passive sampling device to act as a biomimetic for PFAS bioaccumulation, and (4) understand public perceptions of risks posed by PFAS-contaminated fish tissue to inform public policymaking.

Research Information

Principal Investigator:
David Lampert
Initiation Date:
2024
Affiliation:
Illinois Institute of Technology

Our Work

Contacts

David Lampert
dlampert1@iit.edu
Amandeep Sandhu
asandhu2@iit.edu
Matthew A. Shapiro
shapiro@iit.edu
Skip to content