Environmental DNA, or eDNA, had a moment in the limelight around 2010, when through the use of this monitoring tool, researchers found evidence of Asian carp in Chicago waterways past the electric barrier installed to stop these fish, and within range of Lake Michigan.

This news, along with several captures of Asian carp in local waters, alerted resource managers and other decision makers to the status of these fish that pose a threat to the Great Lakes.

Environmental DNA is detected in traces of shed skin, hair, mucus and waste, for example, that an organism leaves behind in its surroundings. This monitoring tool was initially used to survey microorganism biodiversity and to sample ancient DNA in soil or ice cores. In the past decade or more, eDNA sampling has been used in lakes and rivers to check for the presence or absence of a species as well as quantifying how many species are found in the waterway.

“Through the newest method, eDNA metabarcoding, we can identify the presence of all fish species inhabiting a body of water,” said Nathan Evans, a postdoc at Florida International University. With Illinois-Indiana Sea Grant funding, Evans, while a graduate student at the University of Notre Dame, assessed the effectiveness of eDNA for conservation management through a literature review of related studies.

He found that eDNA sampling has some advantages over traditional sampling, which include netting fish, electrofishing, or doing visual surveys. These methods are effort intensive and typically have low detection probabilities for rare species, meaning that there is a smaller chance that these less abundant species will show up in sampling.

“Whether in fish or bird or mammal communities, the typical pattern is that they are comprised of a few very abundant species, and large numbers of rare species,” he explained. “Using eDNA increases detection probabilities for those rare species.”

But eDNA sampling is not a replacement for traditional monitoring methods. “With traditional sampling, you are holding the fish, you can measure many more aspects, including size and sex,” said Evans. “With eDNA, you are learning if the fish is there or not, and possibly its abundance.”

yellow perch

Through traditional sampling, researchers can gather information about the status of yellow perch in Great Lakes waters.

As part of Gary Lamberti’s lab at Notre Dame, Evans also engaged in field research on the costs and effectiveness of using eDNA to sample water bodies. Currently, eDNA is more costly than traditional sampling, but is more effort efficient—it provides a more thorough sample of a system with less effort.

Going forward, he sees eDNA costs coming down and the process getting faster, potentially providing the technology to have immediate information in the field. And, research related to eDNA transport is growing. “Right now we sample downstream to learn about fish that are upstream. But we don’t know how far upstream they are—it could be two feet or 20 miles,” Evans said. “The technology will advance to enable us to pinpoint where species are in a watershed. This will revolutionize species management and ecological research.”

This literature review is published in the January 2018 issue of Fisheries Research.

IISG Instagram

Join the Invasive Crayfish Collaborative for an exciting webinar featuring Purdue University master's student Izzy Paulsen. Izzy will share her mixed method study exploring how and why teachers use live crayfish and their interest in outreach. Her study draws from interview and survey data conducted in Great Lakes states. Register at the link in bio.
Deadline extended! The IISG program, in cooperation with the @nationalparkservice at @indianadunesnps and @UrbanRivers in Chicago, is offering two internship opportunities to support conservation policy efforts. Sea Grant’s national Community Engaged Internship (CEI) program aims to broaden participation in coastal, ocean, Great Lakes, and marine sciences providing training and mentorship to the next generation of scientists, decision-makers, and citizens. The program will do so by recruiting, retaining and engaging students in place-based research, extension, education, and/or communication that respects and integrates local ways of knowing.Applications due April 21.Learn more at the link in bio.
Join us this Thursday for a seminar on the latest fish biology, ecology, and fisheries science happening in Lake Michigan. Speaker will include: -Anna Hill (Purdue) with an update on alewife diet and growth rates in Lake Michigan-Charlie Roswell (INHS) with an update on Lake Michigan and Calumet River smallmouth bass movement-Dan Makauska (IL DNR) with an update from the Illinois Department of Natural ResourcesLearn more and register at the link in bio.
Skip to content