Today we take a break from discussing the latest Great Lakes research to recognize one of the scientists who laid the foundation for modern water science. 

From the U.S. Geological Survey’s Science Features:  

Luna B. Leopold, son of famed conservationist Aldo Leopold, arrived at the USGS in 1950. For the next two decades, Leopold revolutionized hydrologic sciences within and outside the USGS. He is best known for his work in the field of geomorphology, the study of land features and the processes that create and change them. His work is often cited today by leading scientists in water research, both at the USGS and around the world. 

Leopold had a lasting impact on the field of water science. He knew the broader importance of our water resources and that humans can have great impact on whether water is available, now and in the future. Our society depends on safe and reliable water supplies, as do the Earth’s diverse and valuable ecosystems. Today, our nation is faced with the challenge of balancing a finite freshwater supply between competing needs, such as agriculture, drinking water, energy production, and ecosystems. 

Leopold recognized the fundamental value of science in making smart decisions about water resources and laid the groundwork for modern water science. During his tenure he transformed USGS water research into a professionally-recognized provider of water quality and availability information.

For six years, he served as a hydraulic engineer before becoming the first Chief Hydrologist in the history of the USGS, a position he held until 1966 when he stepped down to pursue his research. While at the USGS, he led the effort to restructure the water science programs to focus on viewing water as a single resource. For example, USGS continues to research the interactions between surface water and groundwater, because use of either of these resources affects the quantity and quality of the other. 

***Leopold writes down his reflections during a 1966 research expedition in Idaho. Photo courtesy of USGS. 

IISG Instagram

🌊 Making Waves in Education Calling all K–12 educators — formal and non-formal! Stay connected to the Great Lakes and inspired in your teaching with our educator-focused newsletter.📬 Why Subscribe?✅ Discover teaching resources and professional development opportunities ✅ Connect with Sea Grant partners and community efforts✅ Bring Great Lakes science and stewardship into your classroom or program🗓️ Published quarterly — with occasional bonus issues when exciting events or new content arise!💡 Whether you’re in a classroom, nature center, or museum, this newsletter helps you make waves in education.👉 Sign up now: https://iiseagrant.org/education/subscribe-to-education-newsletter/ #TeachingTuesday#GreatLakesEducation
When participating in a crayfish participatory science activity, be sure to snap plenty of photos of any crayfish you catch or observe. Not only is it a great way to capture the fun and excitement of the day, but it also helps document the species present. To ensure accurate identification by scientists, it’s important to provide clear photos from multiple angles. Dorsal (top), lateral (side), and ventral (underside) views of the crayfish should always be photographed.To learn more about the specific features to highlight in your photos visit the link in bio or InvasiveCrayfish.org/Management/#Community
Who says “Back to School” means back indoors? While the weather is still warm, take your students on an outdoor science adventure by exploring crayfish in your local waterways.The Invasive Crayfish Collaborative invites grades 2-12 educators to take part in a hands-on participatory science activity. By catching, identifying, and reporting crayfish species in your area, students contribute valuable data that helps scientists better understand where native and invasive crayfish live.Check out what other educators have found and get involved: inaturalist.org/projects/great-lakes-crayfish
Skip to content