Researchers at the University of Illinois, working with the USGS and funded in part by Illinois-Indiana Sea Grant, have developed a modeling system that will help manage and prevent the spread of invasive Asian carp. 


“The model, called Fluvial Egg Drift Simulator (FluEgg), follows a clutch of eggs over time as they travel downstream. Since carp spawn in turbulent waters, they seek places such as dams and spillways. To establish a large population in the Great Lakes, the carp would have to leave the lakes to spawn in the tributaries where the water moves rapidly, usually downstream from dams and spillways, where there is a lot of turbulence. The eggs have to stay suspended in the current to hatch – if they settle on the bottom, they die.
‘The challenge is, of all those million of eggs, how many of those end up hatching?’ said Marcelo Garcia, the U. of I. professor of civil and environmental engineering who led the project. ‘Our challenge has been to find a way to simulate this process from the spawning point all the way downstream. If the eggs are not kept in suspension, they will not be viable and they will die out. We have a model to look at certain streams – like tributaries to the Great Lakes – and figure out whether those streams are potential areas for Asian carp to reproduce. I think we have put together a tool that is going to be eye-opening, to say the least. It’s going to be a lot easier to visualize the transport and the conditions you need for hatching.'”
Read more about the model at the link above, and read about their outreach project here.
Skip to content