Through a magnifier, small pieces of plastic are visible.
Plastic that ends up in waterways breaks down into smaller particles and, eventually, is small enough to be eaten by many organisms. (Image by SIV Stock Studio/Adobe Stock)

Microplastics have been found in the water just about everywhere, as well as in fish and other organisms. At this point, the effects these microplastics are having on fish larvae growth and development, as well as their behavior, isn’t well understood. Nor is any combined impact with other known contaminants.

An Illinois-Indiana Sea Grant faculty scholar set out to gain some insights on these issues and found that fathead minnow larvae are more impacted when their parents have been exposed to microplastics rather than when they ingest it themselves.

Jessica Ward, an animal behavior scientist at Ball State University and graduate student Kenzie Persinger evaluated the impacts of microplastics and a common environmental estrogen on early life stages of the fathead minnow. (Fathead minnows are one of EPA’s model species for toxicology research and are widely used in lab work.)

“One of the main questions we hoped to answer was whether exposing parental fish to microplastics, as well as microplastics associated with endocrine disrupting chemicals, showed downstream behavioral effects in offspring,” said Ward.

The contaminants were introduced through the fish’s diet in amounts that reflect what they would likely experience in the real world. Adult minnows were exposed to microplastics alone or along with estrogen and then allowed to spawn.

After hatching, half of these larvae received continued exposure for 21 days and both this group and the unexposed control group were tested in how they performed in swimming trials.

The researchers measured a significant overall effect on fathead minnow offsprings’ swimming performance when their parents were exposed to microplastics, with or without estrogen. These larvae showed more hyperactive behavior.

“Compared to the control group, the larvae swam farther and faster, which is an indicator of hyperactive behavior,” said Ward.  “Hyperactivity is thought to increase the probability of predation.”

The researchers observed no further changes in larvae that received more exposure after hatching, and no significant effects were observed from larvae only exposed after hatching.

“This suggests that parental exposure has a stronger effect on offspring behavior than direct exposure of the offspring themselves,” said Ward.

IISG Instagram

Don't miss out on the latest edition of our "Making Waves in Education" newsletter! Reserve your spot for a live, Students Ask Scientists call from Lake Superior, and stay updated on upcoming in-person events to learn and network with fellow educators. Perfect for Illinois and Indiana educators passionate about the Great Lakes and environmental education.
Join us on June 6-7 at the Indiana State Fairgrounds to explore aquaculture business management at the NCRAC Aquaculture Business Short Course! Presented by Sea Grant & @purdueextension, this course provides essential skills for effective farm finance management. Don’t miss this opportunity to enhance your expertise in aquaculture!Important Info:-Hands-on training to help aquaculture producers manage their farm finances-Includes one-on-one expert time + free $120 textbook-Instructors from Purdue, Mississippi State, and University of Maryland-Laptop + farm financials required for participation-Limited seating – first come, first served!More info at the link in bio.
May is National Water Safety Month—and Lake Michigan deserves your attention. Its waves may look calm, but dangerous currents and sudden drop-offs make it the most hazardous Great Lake for drownings.This May, we’re encouraging everyone to take a moment to get informed. Check out our brochures, safety tips, and the new Lake Michigan water safety video before heading out to the beach or boat.Full story at the link in bio.
Join the Invasive Crayfish Collaborative for an exciting webinar featuring educator and author Rick Reynolds. Rick will demonstrate how to engage grade 2-12 students using the newly developed science curriculum "Investigating Crayfish and Freshwater Ecosystems". Rick will share STEAM activities, including scientific investigations and simulations. Participants will also gain the tools and confidence to participate in the Invasive Crayfish Collaborative’s crayfish study- supporting ongoing research and conservation efforts. Register for the webinar at the link in bio.
Skip to content