IISG Grad Scholar: Hari Timalsina

Meet Our Grad Student Scholars is a series from Illinois-Indiana Sea Grant (IISG) celebrating the students and research funded by our scholars program. To learn more about our faculty and graduate student funding opportunities, visit Fellowships & Scholarships

Haribansha Timalsina is a third-year Ph.D. student in Agricultural and Biological Engineering at the University of Illinois at Urbana-Champaign, under the guidance of Rabin Bhattarai in the Water Quality Lab. His research focuses on optimizing nature-based practices to mitigate non-point source nutrient pollution to improve water quality in the Great Lakes region and Mississippi River Basin. The funding from IISG supports broadening the scope of his research work on designing, experimenting, and scaling up the combined strategy for mitigating dual nutrients (nitrogen and phosphorus) from agricultural watersheds.


Nutrients like nitrogen and phosphorus are essential for agricultural productivity–they support plant growth and food production to meet the demands of a growing population. However, excessive nutrient runoff from agricultural landscapes has become a major environmental concern, contaminating water bodies and fueling harmful algal blooms. These blooms deplete oxygen levels, disrupt aquatic ecosystems, and threaten drinking water supplies, fisheries, and recreation.

IISG Grad Scholar Hari Timalsina

The Water Quality Laboratory monitors the woodchip bioreactor control structures in Galva, Illinois.

The Great Lakes and the Mississippi River Basin are particularly vulnerable to nutrient pollution due to intensive agricultural activity. Despite decades of regulations and conservation efforts, non-point source (NPS) nutrient pollution remains a persistent challenge, exacerbated by increasing food demands and climate change. Addressing this issue requires continuous innovation in conservation strategies that balance agricultural productivity with environmental protection.

At the Water Quality Laboratory at the University of Illinois at Urbana-Champaign, we take a systematic, multi-scale approach to tackling NPS nutrient pollution. Our research integrates controlled laboratory experiments, field-scale monitoring, and hydrological modeling to develop effective and scalable conservation practices.

One of the key conservation strategies under investigation is the use of woodchip bioreactors—a nature-based solution designed to remove nitrate from agricultural drainage. These bioreactors provide a carbon source that supports microbial denitrification, converting nitrate into harmless nitrogen gas. While effective for nitrate removal, woodchips do not efficiently remove phosphorus, which often coexists in drainage water and contributes to downstream water quality issues.

To better understand the efficiency of the system, our research group has been monitoring full-scale woodchip bioreactors across six locations in Illinois at high precision, treating drainage from 17 to over 50 acres, including one of the state’s largest bioreactors. By analyzing hydrological dynamics such as tile flow, temperature variations, and system design, we aim to better understand the systems, improve nitrate removal efficiency, and assess potential secondary environmental impacts, such as phosphorus leaching.

pic of a woodchip bioreactor site

One of the largest woodchip bioreactors in Illinois is installed near an agricultural field in Springfield.

Building on these field-scale insights, I designed and evaluated an integrated system that combines woodchip bioreactors with waste-derived adsorbents, including modified bottom ash pellets. This system enhances phosphorus removal while maintaining nitrate removal efficiency. Through extensive laboratory investigations, I assessed the adsorption capacities of these materials and optimized system configurations for dual nutrient removal.

Moving forward, I aim to incorporate laboratory and field study results into watershed-scale hydrological models. By simulating nutrient transport and system performance under different environmental conditions, these models will help guide informed decision-making for regional conservation planning. This approach ensures that naturally based and waste-derived conservation practices can be effectively scaled up for large-scale nutrient loss mitigation, providing long-term environmental and economic benefits.

By advancing science-driven solutions and integrating green infrastructure, we can improve water quality, protect critical ecosystems, and promote agricultural sustainability, ensuring resilient food production and clean water for future generations.

 

IISG Instagram

Whether you’re teaching in a classroom, leading outdoor programs, or developing community science initiatives, Illinois-Indiana Sea Grant offers free, high-quality educational resources to support your work.🔗 Dive into lesson plans, activities, and professional development opportunities: https://iiseagrant.org/education/ Empowering educators to connect learners with the Great Lakes and beyond. 🌎💧#TeachingTuesday
Now that the heat of summer has passed, are you thinking about stocking your pond for fishing? 🎣 Find the gamefish you need with the Great Lakes Fresh Fish Finder and make your next catch a great one!Visit https://freshfishfinder.org/.
Great Lakes seafood is local, nutritious, and sustainably sourced.Curious where to find it? Dedicated farmers and producers across the region are bringing fresh fish straight to their communities. By buying local, you’re supporting Great Lakes fishers and farmers. Discover what’s available near you at the Sea Grant Great Lakes Fresh Fish Finder. Visit FreshFishFinder.org to explore fresh options in your area!
Stocking your garden pond or fish tank?The Sea Grant Great Lakes Fresh Fish Finder website can help! Hardworking producers in your community have healthy, sustainable, clean, colorful fish ready for you.Visit FreshFishFinder.org to find fresh fish raised in the Great Lakes region.Stocking your garden pond or fish tank?The Sea Grant Great Lakes Fresh Fish Finder website can help! Hardworking producers in your community have healthy, sustainable, clean, colorful fish ready for you.Visit FreshFishFinder.org to find fresh fish raised in the Great Lakes region.Clink the link in bio to learn more!
Skip to content