Results

Page 5 of 26
Found 154 Results
Sort By: Alphabetical | Newest | Oldest

Assessing the ecological impacts of Eastern Banded Killifish: a native transplant species rapidly expanding its range in Illinois and Indiana

Principal Investigator: Jordan Hartman
Affiliation: University of Illinois at Urbana-Champaign
Initiation Date: 2021

In North America, there are two subspecies of Banded Killifish (Fundulus diaphanus): the Eastern Banded Killifish (F. d. diaphanus) and the Western Banded Killifish (F. d. menona). While Banded Killifish are considered secure across their range, some populations of Western Banded Killifish are considered Vulnerable or Threatened and populations of Eastern Banded Killifish are expanding rapidly into new regions. Subtle differences in the ecology between subspecies has been found to have strong effects on community composition and energy pathways in freshwater ecosystems. Potential ecological differences between Eastern and Western Banded Killifish are unstudied, therefore through this graduate student scholars project we seek to investigate the trophic ecology of Banded Killifish populations from Illinois and Indiana. Using stable isotope analysis, we can determine whether there is an ecological difference in trophic position and dietary niche width between the two subspecies, as well as how the invasion of the Eastern subspecies could impact the Western subspecies and freshwater communities or ecosystems more generally.


The Socio-Environmental Implications to Urban Waters in The Driverless City

Principal Investigator: Alexis Arias
Affiliation: Illinois Institute of Technology
Initiation Date: 2021

Cities can be shaped to mitigate potential risks and improve the safety of citizens. However, modifying the urban setting to expand autonomous vehicle safety could negatively impact the community’s water systems health. This graduate student scholars research project aims to leverage a shift in transportation technologies, in a period of climate crisis, for the benefit and safety of people and natural systems – including water systems. This researcher will compile ideas on a multidisciplinary effort, representing different aspects of the city and diverse effects on the influence of technology in urban water systems to present a comprehensive document that questions the possible outcomes in the physical, political, and social aspects.


Using Habitat Suitability Modeling to Determine the Vulnerability of Rare Illinois Plant Species to Climate Change

Principal Investigator: Alexandra Touloupas
Affiliation: Northwestern University
Initiation Date: 2021

Through this graduate student scholars project, I will expand the impact of my research using habitat suitability modeling (HSM) to map the distribution of Illinois wetland rare plant species and assess their vulnerability to climate change. Using HSM, I will determine the required niche conditions for two species, Epilobium strictum and Rhynchospora alba and identify locations of suitable habitat in Illinois. To evaluate the accuracy of my models, I will conduct field monitoring of all known populations, as well as sites designated as suitable by the models to potentially discover new populations. The monitoring data collected will be added to the HSM, which I will use to test the possible response of these species to predicted climate scenarios. Rare plant conservation efforts require informed climate strategies to implement urgently-needed species protections and prevent unnecessary climate extinctions. 


Development of Freeze-Thaw Resistant Porous Asphalt Mixtures for Southern Lake Michigan Flexible Pavements

Principal Investigator: Ramez Hajj
Affiliation: University of Illinois at Urbana-Champaign
Initiation Date: 2021

Although widely used in Europe and Asia, porous asphalt has not been extensively used in the southern Lake Michigan region due to its poor resistance to freeze-thaw. This study aims to (i) synthesize the existing literature on porous asphalt, (ii) determine the need for porous asphalt pavements on the southern Lake Michigan coast, and (iii) develop in the laboratory a porous asphalt mixture capable of resisting freeze-thaw cycles common to this region. 


Building a smart water quality monitoring program to improve environmental justice in Southern Lake Michigan

Principal Investigator: David Lampert
Affiliation: Illinois Institute of Technology
Initiation Date: 2021

The long-term goal of this project is to develop smart water infrastructure to help improve water management in the southern Lake Michigan region, particularly for communities in historically disadvantaged locations. The short term goal is to develop a program to assess contamination, hydrology, and water quality in impoverished areas of South Chicago. The specific objectives of this project are to: 1) implement flow and water quality sensors to assess pollution in select locations, 2) develop a stormwater model to assess the effects of hydraulic infrastructure and land usage on hydrology and water quality, 3) build collaborations with other water quality professionals in the Southern Lake Michigan region, and 4) create proposals for submission to other funding agencies to continue development of this program. The results are expected to increase ecosystem health, improve the resiliency of communities and economies, and enhance environmental literacy and workforce development. 


Human-assisted robotic sampling of aquatic microorganisms

Principal Investigator: Sachit Butail
Affiliation: Northern Illinois University
Initiation Date: 2021

Robots as mobile sensors can monitor large areas repeatedly. An effective robotic solution should benefit from human knowledge and experience as well as integrates an established sampling strategy. This project envisions a human-assisted robotic solution for sampling spiny water flea (Bythotrephes longimanus), an invasive microorganism notorious for its ecological and economic harm in the Great Lakes. The project outcomes include extensive field testing of the device, a design upgrade based on test results, and the design of a robotic boat that can utilize the device to sample water flea in nearshore regions at depths of up to 25 m. Results from this work will set the stage for large-scale monitoring projects where robots that can be used by selectively and consistently monitor complex ecosystems.

 


Page 5 of 26

Search All IISG Research Projects

Skip to content